File size: 6,455 Bytes
ef02fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: transformers
license: mit
base_model: haryoaw/scenario-TCR-NER_data-univner_half
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: scenario-non-kd-po-ner-full-mdeberta_data-univner_half55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-po-ner-full-mdeberta_data-univner_half55

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1503
- Precision: 0.8528
- Recall: 0.8701
- F1: 0.8614
- Accuracy: 0.9848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0066        | 0.5828  | 500   | 0.1023          | 0.8339    | 0.8461 | 0.8399 | 0.9829   |
| 0.0066        | 1.1655  | 1000  | 0.0991          | 0.8499    | 0.8478 | 0.8488 | 0.9838   |
| 0.0063        | 1.7483  | 1500  | 0.1052          | 0.8388    | 0.8562 | 0.8474 | 0.9834   |
| 0.005         | 2.3310  | 2000  | 0.1075          | 0.8267    | 0.8645 | 0.8452 | 0.9830   |
| 0.0058        | 2.9138  | 2500  | 0.1067          | 0.8431    | 0.8673 | 0.8550 | 0.9838   |
| 0.0044        | 3.4965  | 3000  | 0.1132          | 0.8353    | 0.8605 | 0.8477 | 0.9835   |
| 0.0042        | 4.0793  | 3500  | 0.1059          | 0.8429    | 0.8689 | 0.8557 | 0.9842   |
| 0.0038        | 4.6620  | 4000  | 0.1047          | 0.8468    | 0.8671 | 0.8569 | 0.9845   |
| 0.0033        | 5.2448  | 4500  | 0.1195          | 0.8323    | 0.8557 | 0.8439 | 0.9832   |
| 0.0037        | 5.8275  | 5000  | 0.1231          | 0.8376    | 0.8618 | 0.8495 | 0.9831   |
| 0.0023        | 6.4103  | 5500  | 0.1207          | 0.8427    | 0.8639 | 0.8532 | 0.9839   |
| 0.0026        | 6.9930  | 6000  | 0.1162          | 0.8544    | 0.8566 | 0.8555 | 0.9841   |
| 0.0029        | 7.5758  | 6500  | 0.1149          | 0.8418    | 0.8691 | 0.8553 | 0.9841   |
| 0.0022        | 8.1585  | 7000  | 0.1342          | 0.8600    | 0.8543 | 0.8571 | 0.9842   |
| 0.0025        | 8.7413  | 7500  | 0.1159          | 0.8538    | 0.8566 | 0.8552 | 0.9842   |
| 0.0023        | 9.3240  | 8000  | 0.1253          | 0.8468    | 0.8512 | 0.8490 | 0.9837   |
| 0.0018        | 9.9068  | 8500  | 0.1288          | 0.8536    | 0.8546 | 0.8541 | 0.9839   |
| 0.0018        | 10.4895 | 9000  | 0.1243          | 0.8439    | 0.8523 | 0.8480 | 0.9837   |
| 0.0015        | 11.0723 | 9500  | 0.1278          | 0.8546    | 0.8540 | 0.8543 | 0.9839   |
| 0.0015        | 11.6550 | 10000 | 0.1337          | 0.8587    | 0.8564 | 0.8576 | 0.9840   |
| 0.0018        | 12.2378 | 10500 | 0.1324          | 0.8339    | 0.8562 | 0.8449 | 0.9836   |
| 0.0017        | 12.8205 | 11000 | 0.1284          | 0.845     | 0.8534 | 0.8492 | 0.9837   |
| 0.0013        | 13.4033 | 11500 | 0.1304          | 0.8581    | 0.8602 | 0.8591 | 0.9846   |
| 0.0015        | 13.9860 | 12000 | 0.1310          | 0.8335    | 0.8593 | 0.8462 | 0.9836   |
| 0.0013        | 14.5688 | 12500 | 0.1356          | 0.8422    | 0.8563 | 0.8492 | 0.9836   |
| 0.0009        | 15.1515 | 13000 | 0.1374          | 0.8559    | 0.8713 | 0.8635 | 0.9849   |
| 0.0013        | 15.7343 | 13500 | 0.1321          | 0.8399    | 0.8696 | 0.8545 | 0.9844   |
| 0.0009        | 16.3170 | 14000 | 0.1412          | 0.8431    | 0.8628 | 0.8528 | 0.9838   |
| 0.0011        | 16.8998 | 14500 | 0.1337          | 0.8527    | 0.8645 | 0.8586 | 0.9845   |
| 0.0006        | 17.4825 | 15000 | 0.1438          | 0.8620    | 0.8641 | 0.8630 | 0.9847   |
| 0.001         | 18.0653 | 15500 | 0.1346          | 0.8529    | 0.8683 | 0.8605 | 0.9847   |
| 0.0005        | 18.6480 | 16000 | 0.1356          | 0.8620    | 0.8667 | 0.8643 | 0.9850   |
| 0.0007        | 19.2308 | 16500 | 0.1426          | 0.8612    | 0.8622 | 0.8617 | 0.9845   |
| 0.0005        | 19.8135 | 17000 | 0.1415          | 0.8543    | 0.8588 | 0.8565 | 0.9844   |
| 0.0007        | 20.3963 | 17500 | 0.1385          | 0.8590    | 0.8589 | 0.8590 | 0.9844   |
| 0.0007        | 20.9790 | 18000 | 0.1405          | 0.8439    | 0.8696 | 0.8565 | 0.9840   |
| 0.0006        | 21.5618 | 18500 | 0.1414          | 0.8579    | 0.8648 | 0.8613 | 0.9846   |
| 0.0005        | 22.1445 | 19000 | 0.1386          | 0.8579    | 0.8612 | 0.8595 | 0.9845   |
| 0.0003        | 22.7273 | 19500 | 0.1447          | 0.8466    | 0.8735 | 0.8598 | 0.9843   |
| 0.0004        | 23.3100 | 20000 | 0.1413          | 0.8529    | 0.8626 | 0.8578 | 0.9845   |
| 0.0003        | 23.8928 | 20500 | 0.1404          | 0.8580    | 0.8655 | 0.8617 | 0.9850   |
| 0.0003        | 24.4755 | 21000 | 0.1466          | 0.8549    | 0.8681 | 0.8615 | 0.9847   |
| 0.0002        | 25.0583 | 21500 | 0.1467          | 0.8549    | 0.8645 | 0.8597 | 0.9846   |
| 0.0001        | 25.6410 | 22000 | 0.1495          | 0.8497    | 0.8746 | 0.8620 | 0.9847   |
| 0.0002        | 26.2238 | 22500 | 0.1479          | 0.8526    | 0.8701 | 0.8613 | 0.9848   |
| 0.0001        | 26.8065 | 23000 | 0.1485          | 0.8535    | 0.8655 | 0.8595 | 0.9846   |
| 0.0002        | 27.3893 | 23500 | 0.1482          | 0.8535    | 0.8691 | 0.8612 | 0.9847   |
| 0.0001        | 27.9720 | 24000 | 0.1501          | 0.8502    | 0.8683 | 0.8592 | 0.9845   |
| 0.0001        | 28.5548 | 24500 | 0.1490          | 0.8521    | 0.8670 | 0.8595 | 0.9847   |
| 0.0001        | 29.1375 | 25000 | 0.1506          | 0.8503    | 0.8713 | 0.8607 | 0.9847   |
| 0.0001        | 29.7203 | 25500 | 0.1503          | 0.8528    | 0.8701 | 0.8614 | 0.9848   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1