Initial Commit
Browse files- README.md +89 -0
- config.json +46 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: haryoaw/scenario-TCR-NER_data-univner_en
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-non-kd-po-ner-full-xlmr_data-univner_en44
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-non-kd-po-ner-full-xlmr_data-univner_en44
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1413
|
25 |
+
- Precision: 0.7900
|
26 |
+
- Recall: 0.8023
|
27 |
+
- F1: 0.7961
|
28 |
+
- Accuracy: 0.9836
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 44
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 30
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.0035 | 1.2755 | 500 | 0.1065 | 0.7916 | 0.8023 | 0.7969 | 0.9842 |
|
60 |
+
| 0.0036 | 2.5510 | 1000 | 0.1246 | 0.7914 | 0.7619 | 0.7764 | 0.9821 |
|
61 |
+
| 0.0027 | 3.8265 | 1500 | 0.1191 | 0.7819 | 0.8054 | 0.7935 | 0.9837 |
|
62 |
+
| 0.002 | 5.1020 | 2000 | 0.1324 | 0.7907 | 0.7940 | 0.7924 | 0.9831 |
|
63 |
+
| 0.0023 | 6.3776 | 2500 | 0.1197 | 0.7826 | 0.8085 | 0.7953 | 0.9836 |
|
64 |
+
| 0.0017 | 7.6531 | 3000 | 0.1390 | 0.7673 | 0.8054 | 0.7859 | 0.9819 |
|
65 |
+
| 0.0012 | 8.9286 | 3500 | 0.1371 | 0.7827 | 0.7609 | 0.7717 | 0.9815 |
|
66 |
+
| 0.0013 | 10.2041 | 4000 | 0.1459 | 0.7426 | 0.8002 | 0.7703 | 0.9809 |
|
67 |
+
| 0.0017 | 11.4796 | 4500 | 0.1345 | 0.7771 | 0.7723 | 0.7747 | 0.9819 |
|
68 |
+
| 0.0011 | 12.7551 | 5000 | 0.1327 | 0.7824 | 0.7930 | 0.7877 | 0.9831 |
|
69 |
+
| 0.001 | 14.0306 | 5500 | 0.1422 | 0.7591 | 0.7961 | 0.7772 | 0.9813 |
|
70 |
+
| 0.0009 | 15.3061 | 6000 | 0.1383 | 0.7715 | 0.7899 | 0.7806 | 0.9819 |
|
71 |
+
| 0.0006 | 16.5816 | 6500 | 0.1360 | 0.7827 | 0.8054 | 0.7939 | 0.9831 |
|
72 |
+
| 0.0006 | 17.8571 | 7000 | 0.1429 | 0.7889 | 0.7930 | 0.7909 | 0.9834 |
|
73 |
+
| 0.0006 | 19.1327 | 7500 | 0.1409 | 0.7933 | 0.7826 | 0.7879 | 0.9827 |
|
74 |
+
| 0.0005 | 20.4082 | 8000 | 0.1415 | 0.7886 | 0.7992 | 0.7938 | 0.9835 |
|
75 |
+
| 0.0005 | 21.6837 | 8500 | 0.1361 | 0.7913 | 0.7930 | 0.7921 | 0.9832 |
|
76 |
+
| 0.0004 | 22.9592 | 9000 | 0.1393 | 0.8069 | 0.8002 | 0.8035 | 0.9839 |
|
77 |
+
| 0.0004 | 24.2347 | 9500 | 0.1376 | 0.7784 | 0.8147 | 0.7962 | 0.9835 |
|
78 |
+
| 0.0003 | 25.5102 | 10000 | 0.1421 | 0.7862 | 0.7919 | 0.7891 | 0.9833 |
|
79 |
+
| 0.0002 | 26.7857 | 10500 | 0.1417 | 0.7882 | 0.8054 | 0.7967 | 0.9834 |
|
80 |
+
| 0.0002 | 28.0612 | 11000 | 0.1399 | 0.7900 | 0.7981 | 0.7940 | 0.9835 |
|
81 |
+
| 0.0001 | 29.3367 | 11500 | 0.1413 | 0.7900 | 0.8023 | 0.7961 | 0.9836 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.44.2
|
87 |
+
- Pytorch 2.1.1+cu121
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0,
|
26 |
+
"LABEL_1": 1,
|
27 |
+
"LABEL_2": 2,
|
28 |
+
"LABEL_3": 3,
|
29 |
+
"LABEL_4": 4,
|
30 |
+
"LABEL_5": 5,
|
31 |
+
"LABEL_6": 6
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"max_position_embeddings": 514,
|
35 |
+
"model_type": "xlm-roberta",
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 12,
|
38 |
+
"output_past": true,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"position_embedding_type": "absolute",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.44.2",
|
43 |
+
"type_vocab_size": 1,
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 250002
|
46 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.37209302325581395, "recall": 0.6530612244897959, "f1": 0.47407407407407404, "accuracy": 0.9405405405405406}, "en_pud": {"precision": 0.8098933074684772, "recall": 0.7767441860465116, "f1": 0.7929724596391263, "accuracy": 0.9789384208537968}, "de_pud": {"precision": 0.781431334622824, "recall": 0.7776708373435997, "f1": 0.7795465508924265, "accuracy": 0.9758098542028034}, "pt_pud": {"precision": 0.8095684803001876, "recall": 0.7852593266606005, "f1": 0.7972286374133949, "accuracy": 0.9798778143290469}, "ru_pud": {"precision": 0.6734496124031008, "recall": 0.6708494208494209, "f1": 0.672147001934236, "accuracy": 0.9661069491087574}, "sv_pud": {"precision": 0.8372781065088757, "recall": 0.8250728862973761, "f1": 0.8311306901615271, "accuracy": 0.9827007758439924}, "tl_trg": {"precision": 0.75, "recall": 0.9130434782608695, "f1": 0.8235294117647057, "accuracy": 0.9863760217983651}, "tl_ugnayan": {"precision": 0.575, "recall": 0.696969696969697, "f1": 0.6301369863013698, "accuracy": 0.9735642661804923}, "zh_gsd": {"precision": 0.5416666666666666, "recall": 0.423728813559322, "f1": 0.4754937820043892, "accuracy": 0.9314019314019314}, "zh_gsdsimp": {"precision": 0.560200668896321, "recall": 0.43905635648754915, "f1": 0.4922850844966936, "accuracy": 0.9354811854811855}, "hr_set": {"precision": 0.800453514739229, "recall": 0.7548111190306486, "f1": 0.7769625825385178, "accuracy": 0.9726298433635614}, "da_ddt": {"precision": 0.8036649214659686, "recall": 0.6868008948545862, "f1": 0.7406513872135103, "accuracy": 0.9798463533872094}, "en_ewt": {"precision": 0.8349802371541502, "recall": 0.7766544117647058, "f1": 0.8047619047619047, "accuracy": 0.9790014742797944}, "pt_bosque": {"precision": 0.8185365853658536, "recall": 0.6905349794238683, "f1": 0.7491071428571429, "accuracy": 0.9733009708737864}, "sr_set": {"precision": 0.8207070707070707, "recall": 0.7674144037780402, "f1": 0.7931665649786455, "accuracy": 0.970492951580422}, "sk_snk": {"precision": 0.7124413145539906, "recall": 0.6633879781420765, "f1": 0.687040181097906, "accuracy": 0.9568153266331658}, "sv_talbanken": {"precision": 0.8082191780821918, "recall": 0.9030612244897959, "f1": 0.8530120481927711, "accuracy": 0.9972518035039505}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:904350f19b54a46fd59749a2760963a287e452e0dd5c0c05feebc1dd818c36f3
|
3 |
+
size 1109857804
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16378c59cd1ab4574cf37542b80bc6f1b88b7346cb3246912b88250c0bec9033
|
3 |
+
size 5304
|