haryoaw commited on
Commit
d87f525
1 Parent(s): 0cf30b3

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +89 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_en
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-po-ner-full-xlmr_data-univner_en44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-po-ner-full-xlmr_data-univner_en44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1413
25
+ - Precision: 0.7900
26
+ - Recall: 0.8023
27
+ - F1: 0.7961
28
+ - Accuracy: 0.9836
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0035 | 1.2755 | 500 | 0.1065 | 0.7916 | 0.8023 | 0.7969 | 0.9842 |
60
+ | 0.0036 | 2.5510 | 1000 | 0.1246 | 0.7914 | 0.7619 | 0.7764 | 0.9821 |
61
+ | 0.0027 | 3.8265 | 1500 | 0.1191 | 0.7819 | 0.8054 | 0.7935 | 0.9837 |
62
+ | 0.002 | 5.1020 | 2000 | 0.1324 | 0.7907 | 0.7940 | 0.7924 | 0.9831 |
63
+ | 0.0023 | 6.3776 | 2500 | 0.1197 | 0.7826 | 0.8085 | 0.7953 | 0.9836 |
64
+ | 0.0017 | 7.6531 | 3000 | 0.1390 | 0.7673 | 0.8054 | 0.7859 | 0.9819 |
65
+ | 0.0012 | 8.9286 | 3500 | 0.1371 | 0.7827 | 0.7609 | 0.7717 | 0.9815 |
66
+ | 0.0013 | 10.2041 | 4000 | 0.1459 | 0.7426 | 0.8002 | 0.7703 | 0.9809 |
67
+ | 0.0017 | 11.4796 | 4500 | 0.1345 | 0.7771 | 0.7723 | 0.7747 | 0.9819 |
68
+ | 0.0011 | 12.7551 | 5000 | 0.1327 | 0.7824 | 0.7930 | 0.7877 | 0.9831 |
69
+ | 0.001 | 14.0306 | 5500 | 0.1422 | 0.7591 | 0.7961 | 0.7772 | 0.9813 |
70
+ | 0.0009 | 15.3061 | 6000 | 0.1383 | 0.7715 | 0.7899 | 0.7806 | 0.9819 |
71
+ | 0.0006 | 16.5816 | 6500 | 0.1360 | 0.7827 | 0.8054 | 0.7939 | 0.9831 |
72
+ | 0.0006 | 17.8571 | 7000 | 0.1429 | 0.7889 | 0.7930 | 0.7909 | 0.9834 |
73
+ | 0.0006 | 19.1327 | 7500 | 0.1409 | 0.7933 | 0.7826 | 0.7879 | 0.9827 |
74
+ | 0.0005 | 20.4082 | 8000 | 0.1415 | 0.7886 | 0.7992 | 0.7938 | 0.9835 |
75
+ | 0.0005 | 21.6837 | 8500 | 0.1361 | 0.7913 | 0.7930 | 0.7921 | 0.9832 |
76
+ | 0.0004 | 22.9592 | 9000 | 0.1393 | 0.8069 | 0.8002 | 0.8035 | 0.9839 |
77
+ | 0.0004 | 24.2347 | 9500 | 0.1376 | 0.7784 | 0.8147 | 0.7962 | 0.9835 |
78
+ | 0.0003 | 25.5102 | 10000 | 0.1421 | 0.7862 | 0.7919 | 0.7891 | 0.9833 |
79
+ | 0.0002 | 26.7857 | 10500 | 0.1417 | 0.7882 | 0.8054 | 0.7967 | 0.9834 |
80
+ | 0.0002 | 28.0612 | 11000 | 0.1399 | 0.7900 | 0.7981 | 0.7940 | 0.9835 |
81
+ | 0.0001 | 29.3367 | 11500 | 0.1413 | 0.7900 | 0.8023 | 0.7961 | 0.9836 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.2
87
+ - Pytorch 2.1.1+cu121
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.37209302325581395, "recall": 0.6530612244897959, "f1": 0.47407407407407404, "accuracy": 0.9405405405405406}, "en_pud": {"precision": 0.8098933074684772, "recall": 0.7767441860465116, "f1": 0.7929724596391263, "accuracy": 0.9789384208537968}, "de_pud": {"precision": 0.781431334622824, "recall": 0.7776708373435997, "f1": 0.7795465508924265, "accuracy": 0.9758098542028034}, "pt_pud": {"precision": 0.8095684803001876, "recall": 0.7852593266606005, "f1": 0.7972286374133949, "accuracy": 0.9798778143290469}, "ru_pud": {"precision": 0.6734496124031008, "recall": 0.6708494208494209, "f1": 0.672147001934236, "accuracy": 0.9661069491087574}, "sv_pud": {"precision": 0.8372781065088757, "recall": 0.8250728862973761, "f1": 0.8311306901615271, "accuracy": 0.9827007758439924}, "tl_trg": {"precision": 0.75, "recall": 0.9130434782608695, "f1": 0.8235294117647057, "accuracy": 0.9863760217983651}, "tl_ugnayan": {"precision": 0.575, "recall": 0.696969696969697, "f1": 0.6301369863013698, "accuracy": 0.9735642661804923}, "zh_gsd": {"precision": 0.5416666666666666, "recall": 0.423728813559322, "f1": 0.4754937820043892, "accuracy": 0.9314019314019314}, "zh_gsdsimp": {"precision": 0.560200668896321, "recall": 0.43905635648754915, "f1": 0.4922850844966936, "accuracy": 0.9354811854811855}, "hr_set": {"precision": 0.800453514739229, "recall": 0.7548111190306486, "f1": 0.7769625825385178, "accuracy": 0.9726298433635614}, "da_ddt": {"precision": 0.8036649214659686, "recall": 0.6868008948545862, "f1": 0.7406513872135103, "accuracy": 0.9798463533872094}, "en_ewt": {"precision": 0.8349802371541502, "recall": 0.7766544117647058, "f1": 0.8047619047619047, "accuracy": 0.9790014742797944}, "pt_bosque": {"precision": 0.8185365853658536, "recall": 0.6905349794238683, "f1": 0.7491071428571429, "accuracy": 0.9733009708737864}, "sr_set": {"precision": 0.8207070707070707, "recall": 0.7674144037780402, "f1": 0.7931665649786455, "accuracy": 0.970492951580422}, "sk_snk": {"precision": 0.7124413145539906, "recall": 0.6633879781420765, "f1": 0.687040181097906, "accuracy": 0.9568153266331658}, "sv_talbanken": {"precision": 0.8082191780821918, "recall": 0.9030612244897959, "f1": 0.8530120481927711, "accuracy": 0.9972518035039505}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904350f19b54a46fd59749a2760963a287e452e0dd5c0c05feebc1dd818c36f3
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16378c59cd1ab4574cf37542b80bc6f1b88b7346cb3246912b88250c0bec9033
3
+ size 5304