haryoaw commited on
Commit
c5e405e
1 Parent(s): c35c36e

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +89 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_en
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-po-ner-full-xlmr_data-univner_en66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-po-ner-full-xlmr_data-univner_en66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1477
25
+ - Precision: 0.8101
26
+ - Recall: 0.7992
27
+ - F1: 0.8046
28
+ - Accuracy: 0.9836
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0036 | 1.2755 | 500 | 0.1194 | 0.8112 | 0.7785 | 0.7945 | 0.9831 |
60
+ | 0.0035 | 2.5510 | 1000 | 0.1172 | 0.7899 | 0.8137 | 0.8016 | 0.9838 |
61
+ | 0.0029 | 3.8265 | 1500 | 0.1173 | 0.7804 | 0.7909 | 0.7856 | 0.9822 |
62
+ | 0.0019 | 5.1020 | 2000 | 0.1175 | 0.7907 | 0.7940 | 0.7924 | 0.9841 |
63
+ | 0.0018 | 6.3776 | 2500 | 0.1271 | 0.7935 | 0.7836 | 0.7885 | 0.9830 |
64
+ | 0.0021 | 7.6531 | 3000 | 0.1281 | 0.7975 | 0.7909 | 0.7942 | 0.9837 |
65
+ | 0.0012 | 8.9286 | 3500 | 0.1170 | 0.7908 | 0.8023 | 0.7965 | 0.9843 |
66
+ | 0.0018 | 10.2041 | 4000 | 0.1324 | 0.8084 | 0.7950 | 0.8017 | 0.9840 |
67
+ | 0.0011 | 11.4796 | 4500 | 0.1304 | 0.7926 | 0.8188 | 0.8055 | 0.9839 |
68
+ | 0.0007 | 12.7551 | 5000 | 0.1370 | 0.7958 | 0.7867 | 0.7913 | 0.9838 |
69
+ | 0.0011 | 14.0306 | 5500 | 0.1297 | 0.7867 | 0.8095 | 0.7980 | 0.9837 |
70
+ | 0.0012 | 15.3061 | 6000 | 0.1254 | 0.7772 | 0.8126 | 0.7945 | 0.9830 |
71
+ | 0.0007 | 16.5816 | 6500 | 0.1374 | 0.8304 | 0.7909 | 0.8102 | 0.9831 |
72
+ | 0.0006 | 17.8571 | 7000 | 0.1369 | 0.7903 | 0.8116 | 0.8008 | 0.9832 |
73
+ | 0.0003 | 19.1327 | 7500 | 0.1379 | 0.7961 | 0.8043 | 0.8002 | 0.9841 |
74
+ | 0.0003 | 20.4082 | 8000 | 0.1365 | 0.7953 | 0.8002 | 0.7977 | 0.9838 |
75
+ | 0.0004 | 21.6837 | 8500 | 0.1458 | 0.7879 | 0.8230 | 0.8051 | 0.9835 |
76
+ | 0.0004 | 22.9592 | 9000 | 0.1475 | 0.8101 | 0.7992 | 0.8046 | 0.9835 |
77
+ | 0.0004 | 24.2347 | 9500 | 0.1405 | 0.7931 | 0.8054 | 0.7992 | 0.9837 |
78
+ | 0.0001 | 25.5102 | 10000 | 0.1391 | 0.7949 | 0.8147 | 0.8047 | 0.9843 |
79
+ | 0.0002 | 26.7857 | 10500 | 0.1432 | 0.8067 | 0.8033 | 0.8050 | 0.9840 |
80
+ | 0.0002 | 28.0612 | 11000 | 0.1439 | 0.8067 | 0.7992 | 0.8029 | 0.9836 |
81
+ | 0.0001 | 29.3367 | 11500 | 0.1477 | 0.8101 | 0.7992 | 0.8046 | 0.9836 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.2
87
+ - Pytorch 2.1.1+cu121
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.6031746031746031, "recall": 0.7755102040816326, "f1": 0.6785714285714285, "accuracy": 0.9714285714285714}, "en_pud": {"precision": 0.8031496062992126, "recall": 0.7590697674418605, "f1": 0.7804878048780488, "accuracy": 0.9790800906686815}, "de_pud": {"precision": 0.7858627858627859, "recall": 0.7276227141482194, "f1": 0.7556221889055473, "accuracy": 0.9738877689747316}, "pt_pud": {"precision": 0.8387734915924827, "recall": 0.7716105550500455, "f1": 0.8037914691943128, "accuracy": 0.9798778143290469}, "ru_pud": {"precision": 0.7028688524590164, "recall": 0.6621621621621622, "f1": 0.6819085487077535, "accuracy": 0.9662102815809869}, "sv_pud": {"precision": 0.8563995837669095, "recall": 0.7998056365403304, "f1": 0.8271356783919598, "accuracy": 0.981862025581883}, "tl_trg": {"precision": 0.9047619047619048, "recall": 0.8260869565217391, "f1": 0.8636363636363636, "accuracy": 0.9931880108991825}, "tl_ugnayan": {"precision": 0.7027027027027027, "recall": 0.7878787878787878, "f1": 0.7428571428571429, "accuracy": 0.9817684594348223}, "zh_gsd": {"precision": 0.5692599620493358, "recall": 0.39113428943937417, "f1": 0.463678516228748, "accuracy": 0.9309024309024309}, "zh_gsdsimp": {"precision": 0.5611650485436893, "recall": 0.37876802096985585, "f1": 0.4522691705790297, "accuracy": 0.9329004329004329}, "hr_set": {"precision": 0.8473344103392568, "recall": 0.7476835352815395, "f1": 0.7943960620976903, "accuracy": 0.972835943940643}, "da_ddt": {"precision": 0.8027027027027027, "recall": 0.6644295302013423, "f1": 0.7270501835985312, "accuracy": 0.9795470418038511}, "en_ewt": {"precision": 0.8431372549019608, "recall": 0.7509191176470589, "f1": 0.7943607194944093, "accuracy": 0.978363947882217}, "pt_bosque": {"precision": 0.8260869565217391, "recall": 0.6567901234567901, "f1": 0.731774415405777, "accuracy": 0.9702941602666281}, "sr_set": {"precision": 0.8490813648293963, "recall": 0.7638724911452184, "f1": 0.8042262274704784, "accuracy": 0.9670781893004116}, "sk_snk": {"precision": 0.7160342717258262, "recall": 0.639344262295082, "f1": 0.6755196304849884, "accuracy": 0.9558731155778895}, "sv_talbanken": {"precision": 0.8613861386138614, "recall": 0.8877551020408163, "f1": 0.8743718592964823, "accuracy": 0.9973008784413799}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88c2af72af2908edf62bc57852fdcd2e9a277221f55dfbfb3aa8300b2e4dcc1a
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69ee4c52c6603420601211d44f527229b0c6353be4cba6d7de2692682c772691
3
+ size 5304