File size: 6,447 Bytes
f9d3927
2fb3904
f9d3927
 
 
 
 
 
 
2fb3904
 
f9d3927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-po-ner-full-xlmr_data-univner_half44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-po-ner-full-xlmr_data-univner_half44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1451
- Precision: 0.8545
- Recall: 0.8580
- F1: 0.8562
- Accuracy: 0.9846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0099        | 0.5828  | 500   | 0.0855          | 0.8429    | 0.8336 | 0.8382 | 0.9835   |
| 0.0104        | 1.1655  | 1000  | 0.0903          | 0.8392    | 0.8524 | 0.8458 | 0.9841   |
| 0.0085        | 1.7483  | 1500  | 0.0941          | 0.8319    | 0.8524 | 0.8420 | 0.9835   |
| 0.0076        | 2.3310  | 2000  | 0.1037          | 0.8424    | 0.8443 | 0.8433 | 0.9832   |
| 0.0071        | 2.9138  | 2500  | 0.0983          | 0.8252    | 0.8550 | 0.8399 | 0.9831   |
| 0.007         | 3.4965  | 3000  | 0.0964          | 0.8389    | 0.8547 | 0.8467 | 0.9834   |
| 0.0059        | 4.0793  | 3500  | 0.0988          | 0.8418    | 0.8510 | 0.8464 | 0.9839   |
| 0.0051        | 4.6620  | 4000  | 0.1094          | 0.8410    | 0.8472 | 0.8441 | 0.9833   |
| 0.0055        | 5.2448  | 4500  | 0.1039          | 0.8380    | 0.8521 | 0.8450 | 0.9834   |
| 0.0043        | 5.8275  | 5000  | 0.1120          | 0.8416    | 0.8362 | 0.8389 | 0.9827   |
| 0.0046        | 6.4103  | 5500  | 0.1148          | 0.8447    | 0.8450 | 0.8449 | 0.9833   |
| 0.004         | 6.9930  | 6000  | 0.1135          | 0.8323    | 0.8491 | 0.8406 | 0.9832   |
| 0.0036        | 7.5758  | 6500  | 0.1127          | 0.8556    | 0.8377 | 0.8465 | 0.9835   |
| 0.0031        | 8.1585  | 7000  | 0.1192          | 0.8365    | 0.8489 | 0.8427 | 0.9835   |
| 0.0029        | 8.7413  | 7500  | 0.1280          | 0.8403    | 0.8540 | 0.8471 | 0.9834   |
| 0.0035        | 9.3240  | 8000  | 0.1272          | 0.8445    | 0.8371 | 0.8408 | 0.9831   |
| 0.0031        | 9.9068  | 8500  | 0.1132          | 0.8556    | 0.8465 | 0.8510 | 0.9842   |
| 0.0021        | 10.4895 | 9000  | 0.1302          | 0.8383    | 0.8512 | 0.8447 | 0.9835   |
| 0.0023        | 11.0723 | 9500  | 0.1264          | 0.8347    | 0.8472 | 0.8409 | 0.9830   |
| 0.0024        | 11.6550 | 10000 | 0.1191          | 0.8446    | 0.8523 | 0.8484 | 0.9837   |
| 0.0021        | 12.2378 | 10500 | 0.1301          | 0.8419    | 0.8469 | 0.8444 | 0.9834   |
| 0.0027        | 12.8205 | 11000 | 0.1231          | 0.8437    | 0.8541 | 0.8489 | 0.9840   |
| 0.002         | 13.4033 | 11500 | 0.1329          | 0.8345    | 0.8482 | 0.8413 | 0.9828   |
| 0.0017        | 13.9860 | 12000 | 0.1320          | 0.8418    | 0.8575 | 0.8495 | 0.9837   |
| 0.0016        | 14.5688 | 12500 | 0.1298          | 0.8462    | 0.8439 | 0.8450 | 0.9836   |
| 0.0016        | 15.1515 | 13000 | 0.1368          | 0.8440    | 0.8274 | 0.8356 | 0.9831   |
| 0.0019        | 15.7343 | 13500 | 0.1281          | 0.8491    | 0.8453 | 0.8472 | 0.9837   |
| 0.001         | 16.3170 | 14000 | 0.1348          | 0.8469    | 0.8523 | 0.8496 | 0.9839   |
| 0.0014        | 16.8998 | 14500 | 0.1345          | 0.8405    | 0.8515 | 0.8460 | 0.9834   |
| 0.001         | 17.4825 | 15000 | 0.1449          | 0.8449    | 0.8357 | 0.8403 | 0.9833   |
| 0.0011        | 18.0653 | 15500 | 0.1414          | 0.8478    | 0.8541 | 0.8509 | 0.9840   |
| 0.0013        | 18.6480 | 16000 | 0.1414          | 0.8486    | 0.8448 | 0.8466 | 0.9837   |
| 0.001         | 19.2308 | 16500 | 0.1417          | 0.8522    | 0.8549 | 0.8535 | 0.9839   |
| 0.0011        | 19.8135 | 17000 | 0.1400          | 0.8430    | 0.8474 | 0.8452 | 0.9835   |
| 0.001         | 20.3963 | 17500 | 0.1369          | 0.8503    | 0.8498 | 0.8501 | 0.9836   |
| 0.0007        | 20.9790 | 18000 | 0.1349          | 0.8512    | 0.8551 | 0.8532 | 0.9843   |
| 0.001         | 21.5618 | 18500 | 0.1345          | 0.8532    | 0.8495 | 0.8514 | 0.9843   |
| 0.0009        | 22.1445 | 19000 | 0.1397          | 0.8585    | 0.8420 | 0.8502 | 0.9843   |
| 0.0004        | 22.7273 | 19500 | 0.1394          | 0.8522    | 0.8575 | 0.8548 | 0.9846   |
| 0.0006        | 23.3100 | 20000 | 0.1433          | 0.8470    | 0.8576 | 0.8522 | 0.9843   |
| 0.0005        | 23.8928 | 20500 | 0.1447          | 0.8526    | 0.8512 | 0.8519 | 0.9841   |
| 0.0004        | 24.4755 | 21000 | 0.1418          | 0.8492    | 0.8547 | 0.8519 | 0.9843   |
| 0.0004        | 25.0583 | 21500 | 0.1444          | 0.8546    | 0.8556 | 0.8551 | 0.9845   |
| 0.0003        | 25.6410 | 22000 | 0.1458          | 0.8527    | 0.8554 | 0.8541 | 0.9843   |
| 0.0004        | 26.2238 | 22500 | 0.1448          | 0.8541    | 0.8502 | 0.8521 | 0.9843   |
| 0.0003        | 26.8065 | 23000 | 0.1449          | 0.8474    | 0.8579 | 0.8526 | 0.9842   |
| 0.0004        | 27.3893 | 23500 | 0.1448          | 0.8553    | 0.8579 | 0.8566 | 0.9846   |
| 0.0004        | 27.9720 | 24000 | 0.1427          | 0.8589    | 0.8527 | 0.8558 | 0.9844   |
| 0.0002        | 28.5548 | 24500 | 0.1439          | 0.8541    | 0.8582 | 0.8561 | 0.9846   |
| 0.0003        | 29.1375 | 25000 | 0.1446          | 0.8564    | 0.8560 | 0.8562 | 0.9847   |
| 0.0002        | 29.7203 | 25500 | 0.1451          | 0.8545    | 0.8580 | 0.8562 | 0.9846   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1