haryoaw commited on
Commit
3f0560b
1 Parent(s): 2fb3904

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +59 -59
  2. config.json +1 -1
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-xlmr_data-univner_half44
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1451
25
- - Precision: 0.8545
26
- - Recall: 0.8580
27
- - F1: 0.8562
28
- - Accuracy: 0.9846
29
 
30
  ## Model description
31
 
@@ -56,57 +56,57 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0099 | 0.5828 | 500 | 0.0855 | 0.8429 | 0.8336 | 0.8382 | 0.9835 |
60
- | 0.0104 | 1.1655 | 1000 | 0.0903 | 0.8392 | 0.8524 | 0.8458 | 0.9841 |
61
- | 0.0085 | 1.7483 | 1500 | 0.0941 | 0.8319 | 0.8524 | 0.8420 | 0.9835 |
62
- | 0.0076 | 2.3310 | 2000 | 0.1037 | 0.8424 | 0.8443 | 0.8433 | 0.9832 |
63
- | 0.0071 | 2.9138 | 2500 | 0.0983 | 0.8252 | 0.8550 | 0.8399 | 0.9831 |
64
- | 0.007 | 3.4965 | 3000 | 0.0964 | 0.8389 | 0.8547 | 0.8467 | 0.9834 |
65
- | 0.0059 | 4.0793 | 3500 | 0.0988 | 0.8418 | 0.8510 | 0.8464 | 0.9839 |
66
- | 0.0051 | 4.6620 | 4000 | 0.1094 | 0.8410 | 0.8472 | 0.8441 | 0.9833 |
67
- | 0.0055 | 5.2448 | 4500 | 0.1039 | 0.8380 | 0.8521 | 0.8450 | 0.9834 |
68
- | 0.0043 | 5.8275 | 5000 | 0.1120 | 0.8416 | 0.8362 | 0.8389 | 0.9827 |
69
- | 0.0046 | 6.4103 | 5500 | 0.1148 | 0.8447 | 0.8450 | 0.8449 | 0.9833 |
70
- | 0.004 | 6.9930 | 6000 | 0.1135 | 0.8323 | 0.8491 | 0.8406 | 0.9832 |
71
- | 0.0036 | 7.5758 | 6500 | 0.1127 | 0.8556 | 0.8377 | 0.8465 | 0.9835 |
72
- | 0.0031 | 8.1585 | 7000 | 0.1192 | 0.8365 | 0.8489 | 0.8427 | 0.9835 |
73
- | 0.0029 | 8.7413 | 7500 | 0.1280 | 0.8403 | 0.8540 | 0.8471 | 0.9834 |
74
- | 0.0035 | 9.3240 | 8000 | 0.1272 | 0.8445 | 0.8371 | 0.8408 | 0.9831 |
75
- | 0.0031 | 9.9068 | 8500 | 0.1132 | 0.8556 | 0.8465 | 0.8510 | 0.9842 |
76
- | 0.0021 | 10.4895 | 9000 | 0.1302 | 0.8383 | 0.8512 | 0.8447 | 0.9835 |
77
- | 0.0023 | 11.0723 | 9500 | 0.1264 | 0.8347 | 0.8472 | 0.8409 | 0.9830 |
78
- | 0.0024 | 11.6550 | 10000 | 0.1191 | 0.8446 | 0.8523 | 0.8484 | 0.9837 |
79
- | 0.0021 | 12.2378 | 10500 | 0.1301 | 0.8419 | 0.8469 | 0.8444 | 0.9834 |
80
- | 0.0027 | 12.8205 | 11000 | 0.1231 | 0.8437 | 0.8541 | 0.8489 | 0.9840 |
81
- | 0.002 | 13.4033 | 11500 | 0.1329 | 0.8345 | 0.8482 | 0.8413 | 0.9828 |
82
- | 0.0017 | 13.9860 | 12000 | 0.1320 | 0.8418 | 0.8575 | 0.8495 | 0.9837 |
83
- | 0.0016 | 14.5688 | 12500 | 0.1298 | 0.8462 | 0.8439 | 0.8450 | 0.9836 |
84
- | 0.0016 | 15.1515 | 13000 | 0.1368 | 0.8440 | 0.8274 | 0.8356 | 0.9831 |
85
- | 0.0019 | 15.7343 | 13500 | 0.1281 | 0.8491 | 0.8453 | 0.8472 | 0.9837 |
86
- | 0.001 | 16.3170 | 14000 | 0.1348 | 0.8469 | 0.8523 | 0.8496 | 0.9839 |
87
- | 0.0014 | 16.8998 | 14500 | 0.1345 | 0.8405 | 0.8515 | 0.8460 | 0.9834 |
88
- | 0.001 | 17.4825 | 15000 | 0.1449 | 0.8449 | 0.8357 | 0.8403 | 0.9833 |
89
- | 0.0011 | 18.0653 | 15500 | 0.1414 | 0.8478 | 0.8541 | 0.8509 | 0.9840 |
90
- | 0.0013 | 18.6480 | 16000 | 0.1414 | 0.8486 | 0.8448 | 0.8466 | 0.9837 |
91
- | 0.001 | 19.2308 | 16500 | 0.1417 | 0.8522 | 0.8549 | 0.8535 | 0.9839 |
92
- | 0.0011 | 19.8135 | 17000 | 0.1400 | 0.8430 | 0.8474 | 0.8452 | 0.9835 |
93
- | 0.001 | 20.3963 | 17500 | 0.1369 | 0.8503 | 0.8498 | 0.8501 | 0.9836 |
94
- | 0.0007 | 20.9790 | 18000 | 0.1349 | 0.8512 | 0.8551 | 0.8532 | 0.9843 |
95
- | 0.001 | 21.5618 | 18500 | 0.1345 | 0.8532 | 0.8495 | 0.8514 | 0.9843 |
96
- | 0.0009 | 22.1445 | 19000 | 0.1397 | 0.8585 | 0.8420 | 0.8502 | 0.9843 |
97
- | 0.0004 | 22.7273 | 19500 | 0.1394 | 0.8522 | 0.8575 | 0.8548 | 0.9846 |
98
- | 0.0006 | 23.3100 | 20000 | 0.1433 | 0.8470 | 0.8576 | 0.8522 | 0.9843 |
99
- | 0.0005 | 23.8928 | 20500 | 0.1447 | 0.8526 | 0.8512 | 0.8519 | 0.9841 |
100
- | 0.0004 | 24.4755 | 21000 | 0.1418 | 0.8492 | 0.8547 | 0.8519 | 0.9843 |
101
- | 0.0004 | 25.0583 | 21500 | 0.1444 | 0.8546 | 0.8556 | 0.8551 | 0.9845 |
102
- | 0.0003 | 25.6410 | 22000 | 0.1458 | 0.8527 | 0.8554 | 0.8541 | 0.9843 |
103
- | 0.0004 | 26.2238 | 22500 | 0.1448 | 0.8541 | 0.8502 | 0.8521 | 0.9843 |
104
- | 0.0003 | 26.8065 | 23000 | 0.1449 | 0.8474 | 0.8579 | 0.8526 | 0.9842 |
105
- | 0.0004 | 27.3893 | 23500 | 0.1448 | 0.8553 | 0.8579 | 0.8566 | 0.9846 |
106
- | 0.0004 | 27.9720 | 24000 | 0.1427 | 0.8589 | 0.8527 | 0.8558 | 0.9844 |
107
- | 0.0002 | 28.5548 | 24500 | 0.1439 | 0.8541 | 0.8582 | 0.8561 | 0.9846 |
108
- | 0.0003 | 29.1375 | 25000 | 0.1446 | 0.8564 | 0.8560 | 0.8562 | 0.9847 |
109
- | 0.0002 | 29.7203 | 25500 | 0.1451 | 0.8545 | 0.8580 | 0.8562 | 0.9846 |
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-xlmr_data-univner_half44
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1624
25
+ - Precision: 0.8067
26
+ - Recall: 0.8152
27
+ - F1: 0.8109
28
+ - Accuracy: 0.9801
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.075 | 0.5828 | 500 | 0.0769 | 0.7627 | 0.7648 | 0.7638 | 0.9772 |
60
+ | 0.0416 | 1.1655 | 1000 | 0.0813 | 0.7656 | 0.8016 | 0.7832 | 0.9786 |
61
+ | 0.0287 | 1.7483 | 1500 | 0.0833 | 0.7729 | 0.7989 | 0.7857 | 0.9785 |
62
+ | 0.022 | 2.3310 | 2000 | 0.1011 | 0.7465 | 0.7987 | 0.7717 | 0.9767 |
63
+ | 0.0171 | 2.9138 | 2500 | 0.1033 | 0.7570 | 0.8166 | 0.7857 | 0.9774 |
64
+ | 0.0133 | 3.4965 | 3000 | 0.0985 | 0.7734 | 0.8160 | 0.7942 | 0.9786 |
65
+ | 0.0121 | 4.0793 | 3500 | 0.1039 | 0.7721 | 0.8120 | 0.7916 | 0.9787 |
66
+ | 0.0093 | 4.6620 | 4000 | 0.1150 | 0.7766 | 0.8031 | 0.7896 | 0.9781 |
67
+ | 0.0083 | 5.2448 | 4500 | 0.1197 | 0.7771 | 0.8194 | 0.7977 | 0.9788 |
68
+ | 0.0077 | 5.8275 | 5000 | 0.1180 | 0.7721 | 0.8094 | 0.7903 | 0.9784 |
69
+ | 0.0073 | 6.4103 | 5500 | 0.1169 | 0.7924 | 0.8061 | 0.7992 | 0.9793 |
70
+ | 0.0065 | 6.9930 | 6000 | 0.1201 | 0.8011 | 0.8018 | 0.8014 | 0.9791 |
71
+ | 0.0055 | 7.5758 | 6500 | 0.1152 | 0.7950 | 0.7958 | 0.7954 | 0.9792 |
72
+ | 0.0045 | 8.1585 | 7000 | 0.1259 | 0.7825 | 0.8133 | 0.7976 | 0.9790 |
73
+ | 0.0039 | 8.7413 | 7500 | 0.1300 | 0.7878 | 0.8101 | 0.7988 | 0.9793 |
74
+ | 0.0043 | 9.3240 | 8000 | 0.1279 | 0.8026 | 0.7960 | 0.7993 | 0.9792 |
75
+ | 0.0041 | 9.9068 | 8500 | 0.1249 | 0.8033 | 0.7997 | 0.8015 | 0.9790 |
76
+ | 0.0033 | 10.4895 | 9000 | 0.1315 | 0.7890 | 0.8110 | 0.7999 | 0.9793 |
77
+ | 0.0034 | 11.0723 | 9500 | 0.1268 | 0.7914 | 0.8005 | 0.7959 | 0.9789 |
78
+ | 0.0024 | 11.6550 | 10000 | 0.1354 | 0.7943 | 0.8088 | 0.8015 | 0.9798 |
79
+ | 0.0023 | 12.2378 | 10500 | 0.1397 | 0.8003 | 0.8130 | 0.8066 | 0.9798 |
80
+ | 0.0024 | 12.8205 | 11000 | 0.1428 | 0.7779 | 0.8175 | 0.7972 | 0.9788 |
81
+ | 0.0023 | 13.4033 | 11500 | 0.1389 | 0.7896 | 0.8070 | 0.7982 | 0.9792 |
82
+ | 0.0022 | 13.9860 | 12000 | 0.1429 | 0.8 | 0.8051 | 0.8025 | 0.9794 |
83
+ | 0.0017 | 14.5688 | 12500 | 0.1458 | 0.7922 | 0.8113 | 0.8016 | 0.9791 |
84
+ | 0.002 | 15.1515 | 13000 | 0.1430 | 0.7955 | 0.8121 | 0.8037 | 0.9794 |
85
+ | 0.0016 | 15.7343 | 13500 | 0.1487 | 0.7795 | 0.8185 | 0.7985 | 0.9789 |
86
+ | 0.0019 | 16.3170 | 14000 | 0.1401 | 0.7994 | 0.8044 | 0.8019 | 0.9796 |
87
+ | 0.0016 | 16.8998 | 14500 | 0.1468 | 0.7964 | 0.8133 | 0.8048 | 0.9797 |
88
+ | 0.0016 | 17.4825 | 15000 | 0.1440 | 0.7955 | 0.8100 | 0.8027 | 0.9794 |
89
+ | 0.0012 | 18.0653 | 15500 | 0.1430 | 0.8002 | 0.8119 | 0.8060 | 0.9798 |
90
+ | 0.0009 | 18.6480 | 16000 | 0.1558 | 0.7855 | 0.8166 | 0.8007 | 0.9788 |
91
+ | 0.0014 | 19.2308 | 16500 | 0.1478 | 0.8012 | 0.8119 | 0.8065 | 0.9797 |
92
+ | 0.001 | 19.8135 | 17000 | 0.1498 | 0.8101 | 0.8087 | 0.8094 | 0.9798 |
93
+ | 0.0009 | 20.3963 | 17500 | 0.1515 | 0.7946 | 0.8116 | 0.8030 | 0.9795 |
94
+ | 0.0008 | 20.9790 | 18000 | 0.1546 | 0.7967 | 0.8165 | 0.8065 | 0.9796 |
95
+ | 0.0009 | 21.5618 | 18500 | 0.1553 | 0.7953 | 0.8162 | 0.8056 | 0.9796 |
96
+ | 0.0008 | 22.1445 | 19000 | 0.1540 | 0.8001 | 0.8103 | 0.8052 | 0.9798 |
97
+ | 0.0006 | 22.7273 | 19500 | 0.1620 | 0.7877 | 0.8208 | 0.8039 | 0.9793 |
98
+ | 0.0007 | 23.3100 | 20000 | 0.1605 | 0.8127 | 0.7999 | 0.8062 | 0.9795 |
99
+ | 0.0005 | 23.8928 | 20500 | 0.1589 | 0.7974 | 0.8132 | 0.8052 | 0.9799 |
100
+ | 0.0005 | 24.4755 | 21000 | 0.1593 | 0.8016 | 0.8093 | 0.8054 | 0.9797 |
101
+ | 0.0006 | 25.0583 | 21500 | 0.1561 | 0.8060 | 0.8114 | 0.8087 | 0.9800 |
102
+ | 0.0005 | 25.6410 | 22000 | 0.1587 | 0.8028 | 0.8152 | 0.8089 | 0.9798 |
103
+ | 0.0004 | 26.2238 | 22500 | 0.1582 | 0.8058 | 0.8101 | 0.8080 | 0.9802 |
104
+ | 0.0004 | 26.8065 | 23000 | 0.1612 | 0.8003 | 0.8162 | 0.8081 | 0.9799 |
105
+ | 0.0003 | 27.3893 | 23500 | 0.1609 | 0.8066 | 0.8142 | 0.8104 | 0.9801 |
106
+ | 0.0003 | 27.9720 | 24000 | 0.1627 | 0.8032 | 0.8178 | 0.8104 | 0.9801 |
107
+ | 0.0003 | 28.5548 | 24500 | 0.1616 | 0.8081 | 0.8127 | 0.8104 | 0.9801 |
108
+ | 0.0003 | 29.1375 | 25000 | 0.1627 | 0.8065 | 0.8153 | 0.8109 | 0.9801 |
109
+ | 0.0002 | 29.7203 | 25500 | 0.1624 | 0.8067 | 0.8152 | 0.8109 | 0.9801 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -34,7 +34,7 @@
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
- "num_hidden_layers": 12,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
 
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.3770491803278688, "recall": 0.46938775510204084, "f1": 0.41818181818181815, "accuracy": 0.9474903474903474}, "en_pud": {"precision": 0.8205625606207565, "recall": 0.7869767441860465, "f1": 0.8034188034188035, "accuracy": 0.9797884397431054}, "de_pud": {"precision": 0.8081395348837209, "recall": 0.8026948989412896, "f1": 0.8054080154514727, "accuracy": 0.9786695419811542}, "pt_pud": {"precision": 0.8744228993536473, "recall": 0.8616924476797089, "f1": 0.8680109990834098, "accuracy": 0.9860298201392745}, "ru_pud": {"precision": 0.7138836772983115, "recall": 0.7345559845559846, "f1": 0.7240723120837299, "accuracy": 0.9725135623869801}, "sv_pud": {"precision": 0.8677196446199408, "recall": 0.8542274052478134, "f1": 0.8609206660137121, "accuracy": 0.9860033550010484}, "tl_trg": {"precision": 0.7142857142857143, "recall": 0.6521739130434783, "f1": 0.6818181818181819, "accuracy": 0.9836512261580381}, "tl_ugnayan": {"precision": 0.631578947368421, "recall": 0.7272727272727273, "f1": 0.676056338028169, "accuracy": 0.9735642661804923}, "zh_gsd": {"precision": 0.8421052631578947, "recall": 0.834419817470665, "f1": 0.8382449246889325, "accuracy": 0.9776889776889777}, "zh_gsdsimp": {"precision": 0.8682795698924731, "recall": 0.8466579292267365, "f1": 0.8573324485733245, "accuracy": 0.9795204795204795}, "hr_set": {"precision": 0.9279151943462898, "recall": 0.9358517462580185, "f1": 0.9318665720369056, "accuracy": 0.9905193734542457}, "da_ddt": {"precision": 0.8372641509433962, "recall": 0.7941834451901566, "f1": 0.8151549942594718, "accuracy": 0.9851341913598723}, "en_ewt": {"precision": 0.8204158790170132, "recall": 0.7977941176470589, "f1": 0.8089468779123952, "accuracy": 0.9801569908754034}, "pt_bosque": {"precision": 0.8616636528028933, "recall": 0.7843621399176954, "f1": 0.8211977595863852, "accuracy": 0.9825387624981887}, "sr_set": {"precision": 0.953405017921147, "recall": 0.9421487603305785, "f1": 0.9477434679334917, "accuracy": 0.9915944313107433}, "sk_snk": {"precision": 0.7711111111111111, "recall": 0.7584699453551913, "f1": 0.7647382920110193, "accuracy": 0.967964824120603}, "sv_talbanken": {"precision": 0.8333333333333334, "recall": 0.9183673469387755, "f1": 0.8737864077669903, "accuracy": 0.997399028316239}}
 
1
+ {"ceb_gja": {"precision": 0.5352112676056338, "recall": 0.7755102040816326, "f1": 0.6333333333333333, "accuracy": 0.9621621621621622}, "en_pud": {"precision": 0.7788649706457925, "recall": 0.7404651162790697, "f1": 0.7591797806390082, "accuracy": 0.9763411409142425}, "de_pud": {"precision": 0.7080568720379147, "recall": 0.7189605389797883, "f1": 0.7134670487106017, "accuracy": 0.9686371946931696}, "pt_pud": {"precision": 0.8005671077504726, "recall": 0.7707006369426752, "f1": 0.7853500231803432, "accuracy": 0.9794933139659077}, "ru_pud": {"precision": 0.6657433056325023, "recall": 0.6959459459459459, "f1": 0.6805096743747051, "accuracy": 0.9683802634978042}, "sv_pud": {"precision": 0.8348439073514602, "recall": 0.8056365403304179, "f1": 0.8199802176063304, "accuracy": 0.9818096036905012}, "tl_trg": {"precision": 0.6551724137931034, "recall": 0.8260869565217391, "f1": 0.7307692307692308, "accuracy": 0.9795640326975477}, "tl_ugnayan": {"precision": 0.525, "recall": 0.6363636363636364, "f1": 0.5753424657534246, "accuracy": 0.968094804010939}, "zh_gsd": {"precision": 0.8333333333333334, "recall": 0.8279009126466753, "f1": 0.8306082406801831, "accuracy": 0.9773559773559773}, "zh_gsdsimp": {"precision": 0.8095238095238095, "recall": 0.8020969855832241, "f1": 0.8057932850559578, "accuracy": 0.9738594738594739}, "hr_set": {"precision": 0.895438596491228, "recall": 0.909479686386315, "f1": 0.9024045261669025, "accuracy": 0.987881286067601}, "da_ddt": {"precision": 0.8062953995157385, "recall": 0.7449664429530202, "f1": 0.7744186046511627, "accuracy": 0.9834380923875087}, "en_ewt": {"precision": 0.784390243902439, "recall": 0.7389705882352942, "f1": 0.7610033128253668, "accuracy": 0.9764912140893334}, "pt_bosque": {"precision": 0.7774621212121212, "recall": 0.6757201646090535, "f1": 0.7230295024218406, "accuracy": 0.9735907839443559}, "sr_set": {"precision": 0.9101654846335697, "recall": 0.9090909090909091, "f1": 0.9096278795038394, "accuracy": 0.9887925750809912}, "sk_snk": {"precision": 0.7014428412874584, "recall": 0.6907103825136612, "f1": 0.6960352422907489, "accuracy": 0.9594849246231156}, "sv_talbanken": {"precision": 0.7897196261682243, "recall": 0.8622448979591837, "f1": 0.824390243902439, "accuracy": 0.9967119791922265}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f1e09a4771204c8aba13a45d4539a2cd5429529abd3b2944a13c303a708bddf
3
- size 1109857804
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23c7273a5f1b1b96fe9fc6f74550f48f40e96438ab000fb0fc5884d7c7619c96
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eee8034d5bbf8d8c7a470a85d5eb34703ffd7d8525dabdccc78a8b1e6080995f
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d2fea155044c94b83968889b9ddd0016d3b66b5afd13b309fbf06c4b382380
3
  size 5304