haryoaw commited on
Commit
a078f71
1 Parent(s): 1e3f3e9

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +59 -31
  2. config.json +1 -1
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-xlmr_data-univner_half66
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1331
25
- - Precision: 0.8406
26
- - Recall: 0.8491
27
- - F1: 0.8448
28
- - Accuracy: 0.9836
29
 
30
  ## Model description
31
 
@@ -56,29 +56,57 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0102 | 0.5828 | 500 | 0.0979 | 0.8297 | 0.8550 | 0.8422 | 0.9832 |
60
- | 0.0109 | 1.1655 | 1000 | 0.0889 | 0.8346 | 0.8466 | 0.8406 | 0.9835 |
61
- | 0.0084 | 1.7483 | 1500 | 0.0932 | 0.8491 | 0.8462 | 0.8477 | 0.9839 |
62
- | 0.0075 | 2.3310 | 2000 | 0.0919 | 0.8434 | 0.8437 | 0.8436 | 0.9835 |
63
- | 0.0072 | 2.9138 | 2500 | 0.1043 | 0.8278 | 0.8380 | 0.8329 | 0.9826 |
64
- | 0.0058 | 3.4965 | 3000 | 0.1020 | 0.8370 | 0.8468 | 0.8419 | 0.9832 |
65
- | 0.0059 | 4.0793 | 3500 | 0.1030 | 0.8467 | 0.8458 | 0.8463 | 0.9839 |
66
- | 0.005 | 4.6620 | 4000 | 0.1182 | 0.8492 | 0.8326 | 0.8408 | 0.9830 |
67
- | 0.005 | 5.2448 | 4500 | 0.1141 | 0.8235 | 0.8510 | 0.8370 | 0.9821 |
68
- | 0.0044 | 5.8275 | 5000 | 0.1184 | 0.8273 | 0.8572 | 0.8420 | 0.9828 |
69
- | 0.0045 | 6.4103 | 5500 | 0.1213 | 0.8417 | 0.8494 | 0.8455 | 0.9833 |
70
- | 0.0048 | 6.9930 | 6000 | 0.1126 | 0.8413 | 0.8413 | 0.8413 | 0.9835 |
71
- | 0.0043 | 7.5758 | 6500 | 0.1240 | 0.8363 | 0.8472 | 0.8417 | 0.9830 |
72
- | 0.0036 | 8.1585 | 7000 | 0.1185 | 0.8470 | 0.8450 | 0.8460 | 0.9838 |
73
- | 0.0032 | 8.7413 | 7500 | 0.1249 | 0.8338 | 0.8391 | 0.8365 | 0.9828 |
74
- | 0.0022 | 9.3240 | 8000 | 0.1260 | 0.8351 | 0.8499 | 0.8425 | 0.9835 |
75
- | 0.003 | 9.9068 | 8500 | 0.1208 | 0.8273 | 0.8420 | 0.8346 | 0.9827 |
76
- | 0.0024 | 10.4895 | 9000 | 0.1216 | 0.8451 | 0.8463 | 0.8457 | 0.9836 |
77
- | 0.0027 | 11.0723 | 9500 | 0.1214 | 0.8410 | 0.8390 | 0.8400 | 0.9832 |
78
- | 0.0019 | 11.6550 | 10000 | 0.1234 | 0.8419 | 0.8458 | 0.8438 | 0.9833 |
79
- | 0.0023 | 12.2378 | 10500 | 0.1289 | 0.8339 | 0.8502 | 0.8420 | 0.9830 |
80
- | 0.0019 | 12.8205 | 11000 | 0.1286 | 0.8400 | 0.8401 | 0.8401 | 0.9832 |
81
- | 0.002 | 13.4033 | 11500 | 0.1331 | 0.8406 | 0.8491 | 0.8448 | 0.9836 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-po-ner-full-xlmr_data-univner_half66
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1641
25
+ - Precision: 0.8048
26
+ - Recall: 0.8120
27
+ - F1: 0.8084
28
+ - Accuracy: 0.9797
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0757 | 0.5828 | 500 | 0.0751 | 0.7550 | 0.7817 | 0.7681 | 0.9772 |
60
+ | 0.0434 | 1.1655 | 1000 | 0.0856 | 0.7626 | 0.7987 | 0.7803 | 0.9783 |
61
+ | 0.0293 | 1.7483 | 1500 | 0.0781 | 0.7835 | 0.8022 | 0.7928 | 0.9792 |
62
+ | 0.0208 | 2.3310 | 2000 | 0.0929 | 0.7929 | 0.7868 | 0.7898 | 0.9784 |
63
+ | 0.0171 | 2.9138 | 2500 | 0.0903 | 0.7893 | 0.8176 | 0.8032 | 0.9796 |
64
+ | 0.0125 | 3.4965 | 3000 | 0.1048 | 0.7915 | 0.7876 | 0.7896 | 0.9779 |
65
+ | 0.0121 | 4.0793 | 3500 | 0.1080 | 0.7890 | 0.8033 | 0.7961 | 0.9788 |
66
+ | 0.0096 | 4.6620 | 4000 | 0.1116 | 0.7827 | 0.8083 | 0.7953 | 0.9789 |
67
+ | 0.0083 | 5.2448 | 4500 | 0.1136 | 0.7957 | 0.8002 | 0.7979 | 0.9786 |
68
+ | 0.0074 | 5.8275 | 5000 | 0.1162 | 0.7785 | 0.8139 | 0.7958 | 0.9787 |
69
+ | 0.0066 | 6.4103 | 5500 | 0.1192 | 0.7851 | 0.8058 | 0.7953 | 0.9786 |
70
+ | 0.0065 | 6.9930 | 6000 | 0.1200 | 0.8077 | 0.7791 | 0.7931 | 0.9787 |
71
+ | 0.0049 | 7.5758 | 6500 | 0.1227 | 0.8039 | 0.7974 | 0.8007 | 0.9795 |
72
+ | 0.0051 | 8.1585 | 7000 | 0.1259 | 0.7906 | 0.8058 | 0.7981 | 0.9789 |
73
+ | 0.0041 | 8.7413 | 7500 | 0.1258 | 0.7992 | 0.7905 | 0.7948 | 0.9792 |
74
+ | 0.004 | 9.3240 | 8000 | 0.1336 | 0.7865 | 0.8072 | 0.7967 | 0.9786 |
75
+ | 0.0039 | 9.9068 | 8500 | 0.1261 | 0.8145 | 0.7902 | 0.8022 | 0.9792 |
76
+ | 0.0032 | 10.4895 | 9000 | 0.1309 | 0.7940 | 0.7999 | 0.7970 | 0.9791 |
77
+ | 0.0033 | 11.0723 | 9500 | 0.1320 | 0.8054 | 0.7869 | 0.7960 | 0.9793 |
78
+ | 0.0026 | 11.6550 | 10000 | 0.1408 | 0.7915 | 0.8071 | 0.7992 | 0.9789 |
79
+ | 0.0026 | 12.2378 | 10500 | 0.1404 | 0.7942 | 0.8005 | 0.7973 | 0.9788 |
80
+ | 0.0022 | 12.8205 | 11000 | 0.1363 | 0.7897 | 0.8134 | 0.8014 | 0.9797 |
81
+ | 0.0024 | 13.4033 | 11500 | 0.1442 | 0.8065 | 0.7970 | 0.8017 | 0.9793 |
82
+ | 0.0021 | 13.9860 | 12000 | 0.1401 | 0.8092 | 0.7840 | 0.7964 | 0.9789 |
83
+ | 0.0022 | 14.5688 | 12500 | 0.1382 | 0.8100 | 0.7983 | 0.8041 | 0.9792 |
84
+ | 0.0015 | 15.1515 | 13000 | 0.1506 | 0.8066 | 0.7995 | 0.8030 | 0.9793 |
85
+ | 0.0018 | 15.7343 | 13500 | 0.1437 | 0.8047 | 0.7989 | 0.8018 | 0.9794 |
86
+ | 0.002 | 16.3170 | 14000 | 0.1448 | 0.7997 | 0.8046 | 0.8022 | 0.9794 |
87
+ | 0.0016 | 16.8998 | 14500 | 0.1466 | 0.8111 | 0.7934 | 0.8021 | 0.9792 |
88
+ | 0.0013 | 17.4825 | 15000 | 0.1506 | 0.8046 | 0.7943 | 0.7994 | 0.9791 |
89
+ | 0.0012 | 18.0653 | 15500 | 0.1508 | 0.8038 | 0.8067 | 0.8052 | 0.9796 |
90
+ | 0.0011 | 18.6480 | 16000 | 0.1493 | 0.8026 | 0.8013 | 0.8020 | 0.9796 |
91
+ | 0.0011 | 19.2308 | 16500 | 0.1570 | 0.7905 | 0.8048 | 0.7976 | 0.9787 |
92
+ | 0.0011 | 19.8135 | 17000 | 0.1510 | 0.7980 | 0.8075 | 0.8027 | 0.9793 |
93
+ | 0.001 | 20.3963 | 17500 | 0.1534 | 0.7928 | 0.8173 | 0.8049 | 0.9797 |
94
+ | 0.0009 | 20.9790 | 18000 | 0.1485 | 0.7916 | 0.8181 | 0.8046 | 0.9798 |
95
+ | 0.0008 | 21.5618 | 18500 | 0.1509 | 0.8074 | 0.8045 | 0.8060 | 0.9798 |
96
+ | 0.0009 | 22.1445 | 19000 | 0.1515 | 0.8070 | 0.8084 | 0.8077 | 0.9801 |
97
+ | 0.0006 | 22.7273 | 19500 | 0.1566 | 0.8022 | 0.8106 | 0.8064 | 0.9798 |
98
+ | 0.0007 | 23.3100 | 20000 | 0.1620 | 0.8076 | 0.7976 | 0.8026 | 0.9794 |
99
+ | 0.0008 | 23.8928 | 20500 | 0.1570 | 0.8028 | 0.8084 | 0.8056 | 0.9798 |
100
+ | 0.0005 | 24.4755 | 21000 | 0.1563 | 0.8020 | 0.8110 | 0.8065 | 0.9798 |
101
+ | 0.0004 | 25.0583 | 21500 | 0.1610 | 0.8059 | 0.8013 | 0.8036 | 0.9794 |
102
+ | 0.0004 | 25.6410 | 22000 | 0.1645 | 0.8133 | 0.7943 | 0.8036 | 0.9793 |
103
+ | 0.0004 | 26.2238 | 22500 | 0.1615 | 0.8031 | 0.8100 | 0.8066 | 0.9798 |
104
+ | 0.0004 | 26.8065 | 23000 | 0.1630 | 0.8010 | 0.8156 | 0.8083 | 0.9796 |
105
+ | 0.0003 | 27.3893 | 23500 | 0.1626 | 0.8062 | 0.8114 | 0.8088 | 0.9800 |
106
+ | 0.0003 | 27.9720 | 24000 | 0.1626 | 0.8054 | 0.8147 | 0.8101 | 0.9800 |
107
+ | 0.0002 | 28.5548 | 24500 | 0.1639 | 0.8079 | 0.8107 | 0.8093 | 0.9798 |
108
+ | 0.0003 | 29.1375 | 25000 | 0.1637 | 0.8064 | 0.8085 | 0.8075 | 0.9797 |
109
+ | 0.0002 | 29.7203 | 25500 | 0.1641 | 0.8048 | 0.8120 | 0.8084 | 0.9797 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -34,7 +34,7 @@
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
- "num_hidden_layers": 12,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
 
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.6515151515151515, "recall": 0.8775510204081632, "f1": 0.7478260869565216, "accuracy": 0.9783783783783784}, "en_pud": {"precision": 0.8212237093690249, "recall": 0.7990697674418604, "f1": 0.8099952852428101, "accuracy": 0.9802134491877598}, "de_pud": {"precision": 0.8014981273408239, "recall": 0.8238691049085659, "f1": 0.8125296630280019, "accuracy": 0.9786226618536402}, "pt_pud": {"precision": 0.8650137741046832, "recall": 0.8571428571428571, "f1": 0.8610603290676416, "accuracy": 0.9854317084632802}, "ru_pud": {"precision": 0.7129798903107861, "recall": 0.752895752895753, "f1": 0.732394366197183, "accuracy": 0.9727202273314389}, "sv_pud": {"precision": 0.859086491739553, "recall": 0.859086491739553, "f1": 0.859086491739553, "accuracy": 0.9858985112182848}, "tl_trg": {"precision": 0.9166666666666666, "recall": 0.9565217391304348, "f1": 0.9361702127659574, "accuracy": 0.9959128065395095}, "tl_ugnayan": {"precision": 0.6923076923076923, "recall": 0.8181818181818182, "f1": 0.7500000000000001, "accuracy": 0.9808568824065633}, "zh_gsd": {"precision": 0.8350785340314136, "recall": 0.8318122555410691, "f1": 0.8334421946440235, "accuracy": 0.9779387279387279}, "zh_gsdsimp": {"precision": 0.8398950131233596, "recall": 0.8387942332896461, "f1": 0.839344262295082, "accuracy": 0.9781884781884782}, "hr_set": {"precision": 0.9279151943462898, "recall": 0.9358517462580185, "f1": 0.9318665720369056, "accuracy": 0.9912613355317395}, "da_ddt": {"precision": 0.8275058275058275, "recall": 0.7941834451901566, "f1": 0.8105022831050228, "accuracy": 0.9857328145265889}, "en_ewt": {"precision": 0.8248587570621468, "recall": 0.8051470588235294, "f1": 0.8148837209302325, "accuracy": 0.9815914252699526}, "pt_bosque": {"precision": 0.8616636528028933, "recall": 0.7843621399176954, "f1": 0.8211977595863852, "accuracy": 0.982393855962904}, "sr_set": {"precision": 0.9475566150178785, "recall": 0.9386068476977568, "f1": 0.9430604982206405, "accuracy": 0.9908939672533054}, "sk_snk": {"precision": 0.7965554359526372, "recall": 0.8087431693989071, "f1": 0.8026030368763557, "accuracy": 0.9722047738693468}, "sv_talbanken": {"precision": 0.8786407766990292, "recall": 0.923469387755102, "f1": 0.900497512437811, "accuracy": 0.9979388526279629}}
 
1
+ {"ceb_gja": {"precision": 0.5217391304347826, "recall": 0.7346938775510204, "f1": 0.6101694915254238, "accuracy": 0.962934362934363}, "en_pud": {"precision": 0.7692307692307693, "recall": 0.7534883720930232, "f1": 0.7612781954887218, "accuracy": 0.9773328296184359}, "de_pud": {"precision": 0.7374517374517374, "recall": 0.7353224254090471, "f1": 0.7363855421686746, "accuracy": 0.9712624818339506}, "pt_pud": {"precision": 0.7875354107648725, "recall": 0.7588717015468608, "f1": 0.772937905468026, "accuracy": 0.9778271457256377}, "ru_pud": {"precision": 0.6764427625354777, "recall": 0.6901544401544402, "f1": 0.6832298136645963, "accuracy": 0.9680185998450013}, "sv_pud": {"precision": 0.819, "recall": 0.7959183673469388, "f1": 0.807294233612617, "accuracy": 0.9811281191025372}, "tl_trg": {"precision": 0.8260869565217391, "recall": 0.8260869565217391, "f1": 0.8260869565217391, "accuracy": 0.989100817438692}, "tl_ugnayan": {"precision": 0.45, "recall": 0.5454545454545454, "f1": 0.4931506849315069, "accuracy": 0.9626253418413856}, "zh_gsd": {"precision": 0.8126614987080103, "recall": 0.8200782268578879, "f1": 0.8163530175210901, "accuracy": 0.9751914751914752}, "zh_gsdsimp": {"precision": 0.8184245660881175, "recall": 0.8034076015727392, "f1": 0.8108465608465609, "accuracy": 0.9725274725274725}, "hr_set": {"precision": 0.8791666666666667, "recall": 0.902352102637206, "f1": 0.8906085121350685, "accuracy": 0.9870568837592745}, "da_ddt": {"precision": 0.8103448275862069, "recall": 0.7360178970917226, "f1": 0.7713950762016413, "accuracy": 0.9830390102763643}, "en_ewt": {"precision": 0.7845849802371542, "recall": 0.7297794117647058, "f1": 0.7561904761904763, "accuracy": 0.975375542893573}, "pt_bosque": {"precision": 0.7705223880597015, "recall": 0.679835390946502, "f1": 0.7223436816790555, "accuracy": 0.9735545573105348}, "sr_set": {"precision": 0.908235294117647, "recall": 0.911452184179457, "f1": 0.9098408956982911, "accuracy": 0.9880045530163734}, "sk_snk": {"precision": 0.6980088495575221, "recall": 0.6896174863387978, "f1": 0.6937877954920285, "accuracy": 0.9600345477386935}, "sv_talbanken": {"precision": 0.8246445497630331, "recall": 0.8877551020408163, "f1": 0.8550368550368549, "accuracy": 0.9971536536290916}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f50f430da50b680235f848e1ea5b0620a758b589440b255bca07bbdc851ec3ec
3
- size 1109857804
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a3cb6c0dd3b1456118965f042e77f3a73cb700f0ec5eb5d347390dc100868c4
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0fe61d3e7057e3174f4b11fbb2a0ff7fe202e2eafe3273cac41093da663e0043
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b08288095ef35af8077adaf56a01598e2662ae79c30837ccde0f7665f270b2
3
  size 5304