haryoaw commited on
Commit
a731de1
1 Parent(s): 8c47fef

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +89 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_en
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_en44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-pre-ner-full-mdeberta_data-univner_en44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1490
25
+ - Precision: 0.8349
26
+ - Recall: 0.8271
27
+ - F1: 0.8310
28
+ - Accuracy: 0.9846
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0023 | 1.2755 | 500 | 0.1120 | 0.8158 | 0.8344 | 0.8250 | 0.9851 |
60
+ | 0.0019 | 2.5510 | 1000 | 0.1055 | 0.7790 | 0.8468 | 0.8115 | 0.9840 |
61
+ | 0.0019 | 3.8265 | 1500 | 0.1115 | 0.8134 | 0.8395 | 0.8263 | 0.9847 |
62
+ | 0.0013 | 5.1020 | 2000 | 0.1248 | 0.7938 | 0.8251 | 0.8091 | 0.9835 |
63
+ | 0.0016 | 6.3776 | 2500 | 0.1281 | 0.8302 | 0.8147 | 0.8224 | 0.9845 |
64
+ | 0.0012 | 7.6531 | 3000 | 0.1241 | 0.8179 | 0.8137 | 0.8158 | 0.9841 |
65
+ | 0.001 | 8.9286 | 3500 | 0.1191 | 0.8184 | 0.8302 | 0.8243 | 0.9842 |
66
+ | 0.0005 | 10.2041 | 4000 | 0.1335 | 0.7951 | 0.8395 | 0.8167 | 0.9837 |
67
+ | 0.001 | 11.4796 | 4500 | 0.1376 | 0.8125 | 0.8344 | 0.8233 | 0.9843 |
68
+ | 0.0005 | 12.7551 | 5000 | 0.1282 | 0.8244 | 0.8313 | 0.8278 | 0.9847 |
69
+ | 0.0007 | 14.0306 | 5500 | 0.1247 | 0.8294 | 0.8354 | 0.8324 | 0.9848 |
70
+ | 0.0003 | 15.3061 | 6000 | 0.1440 | 0.8143 | 0.8354 | 0.8247 | 0.9841 |
71
+ | 0.0009 | 16.5816 | 6500 | 0.1456 | 0.8384 | 0.8219 | 0.8301 | 0.9840 |
72
+ | 0.0003 | 17.8571 | 7000 | 0.1401 | 0.8154 | 0.8416 | 0.8283 | 0.9849 |
73
+ | 0.0002 | 19.1327 | 7500 | 0.1478 | 0.8306 | 0.8323 | 0.8314 | 0.9850 |
74
+ | 0.0003 | 20.4082 | 8000 | 0.1448 | 0.8306 | 0.8271 | 0.8288 | 0.9850 |
75
+ | 0.0003 | 21.6837 | 8500 | 0.1416 | 0.8240 | 0.8385 | 0.8312 | 0.9847 |
76
+ | 0.0002 | 22.9592 | 9000 | 0.1501 | 0.8159 | 0.8395 | 0.8276 | 0.9843 |
77
+ | 0.0001 | 24.2347 | 9500 | 0.1457 | 0.8243 | 0.8354 | 0.8298 | 0.9845 |
78
+ | 0.0001 | 25.5102 | 10000 | 0.1474 | 0.8258 | 0.8344 | 0.8301 | 0.9846 |
79
+ | 0.0001 | 26.7857 | 10500 | 0.1493 | 0.8244 | 0.8406 | 0.8324 | 0.9847 |
80
+ | 0.0001 | 28.0612 | 11000 | 0.1497 | 0.8418 | 0.8209 | 0.8312 | 0.9847 |
81
+ | 0.0001 | 29.3367 | 11500 | 0.1490 | 0.8349 | 0.8271 | 0.8310 | 0.9846 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.2
87
+ - Pytorch 2.1.1+cu121
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 12,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.6666666666666666, "recall": 0.8163265306122449, "f1": 0.7339449541284403, "accuracy": 0.9791505791505791}, "en_pud": {"precision": 0.8105065666041276, "recall": 0.8037209302325582, "f1": 0.8070994862213919, "accuracy": 0.981724593879864}, "de_pud": {"precision": 0.8129218900675024, "recall": 0.8113570741097209, "f1": 0.8121387283236995, "accuracy": 0.9790445830012657}, "pt_pud": {"precision": 0.8486842105263158, "recall": 0.821656050955414, "f1": 0.8349514563106797, "accuracy": 0.9832101508095868}, "ru_pud": {"precision": 0.687382297551789, "recall": 0.7046332046332047, "f1": 0.6959008579599618, "accuracy": 0.9682769310255748}, "sv_pud": {"precision": 0.8492610837438423, "recall": 0.8377065111758989, "f1": 0.8434442270058709, "accuracy": 0.9840113231285385}, "tl_trg": {"precision": 0.84, "recall": 0.9130434782608695, "f1": 0.8749999999999999, "accuracy": 0.989100817438692}, "tl_ugnayan": {"precision": 0.6136363636363636, "recall": 0.8181818181818182, "f1": 0.7012987012987013, "accuracy": 0.9744758432087511}, "zh_gsd": {"precision": 0.6598726114649681, "recall": 0.6753585397653195, "f1": 0.6675257731958762, "accuracy": 0.9562104562104562}, "zh_gsdsimp": {"precision": 0.6817010309278351, "recall": 0.6933158584534731, "f1": 0.6874593892137751, "accuracy": 0.9591242091242091}, "hr_set": {"precision": 0.8415915915915916, "recall": 0.7990021382751248, "f1": 0.819744058500914, "accuracy": 0.9767106347897774}, "da_ddt": {"precision": 0.8055555555555556, "recall": 0.7136465324384788, "f1": 0.7568208778173191, "accuracy": 0.9817419934151451}, "en_ewt": {"precision": 0.8388888888888889, "recall": 0.8327205882352942, "f1": 0.8357933579335795, "accuracy": 0.9824281786667729}, "pt_bosque": {"precision": 0.824693685202639, "recall": 0.720164609053498, "f1": 0.7688927943760985, "accuracy": 0.9762715548471236}, "sr_set": {"precision": 0.8459657701711492, "recall": 0.8170011806375442, "f1": 0.8312312312312311, "accuracy": 0.9731196917958147}, "sk_snk": {"precision": 0.7393800229621125, "recall": 0.7038251366120218, "f1": 0.7211646136618142, "accuracy": 0.9621545226130653}, "sv_talbanken": {"precision": 0.8627450980392157, "recall": 0.8979591836734694, "f1": 0.8799999999999999, "accuracy": 0.9976934779408156}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ef55ea6b4b05b19d0dc78e9ce92319b1602fcddd712592ae6064feced696b00
3
+ size 1112921036
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72ebe666b155dc533cdefaadecd228d3fa46262d5d3373a63513628e9d1e8ec1
3
+ size 5304