haryoaw commited on
Commit
0829bfa
1 Parent(s): 9bc7bc3

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +108 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_half66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-pre-ner-full-mdeberta_data-univner_half66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1403
25
+ - Precision: 0.8613
26
+ - Recall: 0.8638
27
+ - F1: 0.8626
28
+ - Accuracy: 0.9848
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0064 | 0.5828 | 500 | 0.0946 | 0.8529 | 0.8691 | 0.8609 | 0.9847 |
60
+ | 0.0076 | 1.1655 | 1000 | 0.0939 | 0.8503 | 0.8562 | 0.8532 | 0.9842 |
61
+ | 0.0059 | 1.7483 | 1500 | 0.0980 | 0.8583 | 0.8515 | 0.8549 | 0.9840 |
62
+ | 0.005 | 2.3310 | 2000 | 0.1052 | 0.8469 | 0.8618 | 0.8543 | 0.9840 |
63
+ | 0.0054 | 2.9138 | 2500 | 0.1025 | 0.8389 | 0.8699 | 0.8541 | 0.9841 |
64
+ | 0.0045 | 3.4965 | 3000 | 0.1032 | 0.8371 | 0.8696 | 0.8530 | 0.9836 |
65
+ | 0.0042 | 4.0793 | 3500 | 0.1088 | 0.8459 | 0.8642 | 0.8550 | 0.9840 |
66
+ | 0.0032 | 4.6620 | 4000 | 0.1182 | 0.8301 | 0.8691 | 0.8492 | 0.9828 |
67
+ | 0.0035 | 5.2448 | 4500 | 0.1164 | 0.8486 | 0.8611 | 0.8548 | 0.9841 |
68
+ | 0.0031 | 5.8275 | 5000 | 0.1190 | 0.8352 | 0.8602 | 0.8475 | 0.9836 |
69
+ | 0.0029 | 6.4103 | 5500 | 0.1197 | 0.8516 | 0.8694 | 0.8604 | 0.9843 |
70
+ | 0.0029 | 6.9930 | 6000 | 0.1177 | 0.8282 | 0.8674 | 0.8474 | 0.9833 |
71
+ | 0.0024 | 7.5758 | 6500 | 0.1219 | 0.8396 | 0.8680 | 0.8536 | 0.9845 |
72
+ | 0.0031 | 8.1585 | 7000 | 0.1160 | 0.8566 | 0.8559 | 0.8562 | 0.9846 |
73
+ | 0.002 | 8.7413 | 7500 | 0.1222 | 0.8385 | 0.8624 | 0.8503 | 0.9834 |
74
+ | 0.0021 | 9.3240 | 8000 | 0.1217 | 0.8522 | 0.8667 | 0.8594 | 0.9847 |
75
+ | 0.0019 | 9.9068 | 8500 | 0.1333 | 0.8222 | 0.8699 | 0.8453 | 0.9835 |
76
+ | 0.002 | 10.4895 | 9000 | 0.1210 | 0.8475 | 0.8665 | 0.8569 | 0.9845 |
77
+ | 0.0017 | 11.0723 | 9500 | 0.1192 | 0.8571 | 0.8642 | 0.8606 | 0.9849 |
78
+ | 0.0013 | 11.6550 | 10000 | 0.1329 | 0.8524 | 0.8716 | 0.8619 | 0.9848 |
79
+ | 0.0016 | 12.2378 | 10500 | 0.1337 | 0.8493 | 0.8700 | 0.8595 | 0.9844 |
80
+ | 0.0014 | 12.8205 | 11000 | 0.1245 | 0.8635 | 0.8707 | 0.8671 | 0.9854 |
81
+ | 0.0014 | 13.4033 | 11500 | 0.1299 | 0.8611 | 0.8595 | 0.8603 | 0.9849 |
82
+ | 0.0012 | 13.9860 | 12000 | 0.1229 | 0.8545 | 0.8657 | 0.8600 | 0.9848 |
83
+ | 0.0011 | 14.5688 | 12500 | 0.1258 | 0.8585 | 0.8631 | 0.8608 | 0.9849 |
84
+ | 0.0008 | 15.1515 | 13000 | 0.1377 | 0.8558 | 0.8658 | 0.8608 | 0.9847 |
85
+ | 0.001 | 15.7343 | 13500 | 0.1328 | 0.8576 | 0.8611 | 0.8593 | 0.9846 |
86
+ | 0.0008 | 16.3170 | 14000 | 0.1331 | 0.8596 | 0.8660 | 0.8628 | 0.9850 |
87
+ | 0.0008 | 16.8998 | 14500 | 0.1292 | 0.8549 | 0.8694 | 0.8621 | 0.9849 |
88
+ | 0.0008 | 17.4825 | 15000 | 0.1388 | 0.8496 | 0.8699 | 0.8596 | 0.9846 |
89
+ | 0.0008 | 18.0653 | 15500 | 0.1364 | 0.8577 | 0.8629 | 0.8603 | 0.9848 |
90
+ | 0.0005 | 18.6480 | 16000 | 0.1419 | 0.8627 | 0.8645 | 0.8636 | 0.9848 |
91
+ | 0.0007 | 19.2308 | 16500 | 0.1414 | 0.8569 | 0.8709 | 0.8638 | 0.9850 |
92
+ | 0.0005 | 19.8135 | 17000 | 0.1369 | 0.8513 | 0.8700 | 0.8606 | 0.9848 |
93
+ | 0.0004 | 20.3963 | 17500 | 0.1419 | 0.8580 | 0.8658 | 0.8619 | 0.9849 |
94
+ | 0.0004 | 20.9790 | 18000 | 0.1452 | 0.8598 | 0.8700 | 0.8649 | 0.9849 |
95
+ | 0.0005 | 21.5618 | 18500 | 0.1417 | 0.8540 | 0.8673 | 0.8606 | 0.9842 |
96
+ | 0.0003 | 22.1445 | 19000 | 0.1419 | 0.8667 | 0.8611 | 0.8639 | 0.9848 |
97
+ | 0.0003 | 22.7273 | 19500 | 0.1500 | 0.8588 | 0.8632 | 0.8610 | 0.9845 |
98
+ | 0.0004 | 23.3100 | 20000 | 0.1470 | 0.8557 | 0.8717 | 0.8636 | 0.9846 |
99
+ | 0.0004 | 23.8928 | 20500 | 0.1387 | 0.8652 | 0.8671 | 0.8662 | 0.9852 |
100
+ | 0.0002 | 24.4755 | 21000 | 0.1403 | 0.8613 | 0.8638 | 0.8626 | 0.9848 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.44.2
106
+ - Pytorch 2.1.1+cu121
107
+ - Datasets 2.14.5
108
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 12,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.9583333333333334, "recall": 0.9387755102040817, "f1": 0.9484536082474228, "accuracy": 0.9961389961389961}, "en_pud": {"precision": 0.8153277931671283, "recall": 0.8213953488372093, "f1": 0.8183503243744208, "accuracy": 0.9823857196826596}, "de_pud": {"precision": 0.8085106382978723, "recall": 0.8411934552454283, "f1": 0.8245283018867925, "accuracy": 0.9812010688669073}, "pt_pud": {"precision": 0.8820840950639853, "recall": 0.8780709736123748, "f1": 0.8800729594163246, "accuracy": 0.988294100055539}, "ru_pud": {"precision": 0.7153088630259624, "recall": 0.7712355212355212, "f1": 0.7422201579191826, "accuracy": 0.9742185481787652}, "sv_pud": {"precision": 0.8851351351351351, "recall": 0.891156462585034, "f1": 0.888135593220339, "accuracy": 0.9882574963304676}, "tl_trg": {"precision": 0.9166666666666666, "recall": 0.9565217391304348, "f1": 0.9361702127659574, "accuracy": 0.9959128065395095}, "tl_ugnayan": {"precision": 0.6923076923076923, "recall": 0.8181818181818182, "f1": 0.7500000000000001, "accuracy": 0.9799453053783045}, "zh_gsd": {"precision": 0.8670967741935484, "recall": 0.8761408083441982, "f1": 0.8715953307392995, "accuracy": 0.9818514818514819}, "zh_gsdsimp": {"precision": 0.8878627968337731, "recall": 0.8820445609436435, "f1": 0.8849441157133466, "accuracy": 0.9826839826839827}, "hr_set": {"precision": 0.9203910614525139, "recall": 0.9394155381325731, "f1": 0.9298059964726632, "accuracy": 0.990684253915911}, "da_ddt": {"precision": 0.8744186046511628, "recall": 0.8411633109619687, "f1": 0.8574686431014824, "accuracy": 0.9888257008879577}, "en_ewt": {"precision": 0.8473967684021544, "recall": 0.8676470588235294, "f1": 0.857402361489555, "accuracy": 0.9841415308602622}, "pt_bosque": {"precision": 0.9082167832167832, "recall": 0.8551440329218107, "f1": 0.8808817295464179, "accuracy": 0.9869584118243733}, "sr_set": {"precision": 0.9491725768321513, "recall": 0.948051948051948, "f1": 0.9486119314825754, "accuracy": 0.9908064092461255}, "sk_snk": {"precision": 0.8186695278969958, "recall": 0.833879781420765, "f1": 0.826204656199242, "accuracy": 0.9762091708542714}, "sv_talbanken": {"precision": 0.8227272727272728, "recall": 0.923469387755102, "f1": 0.8701923076923076, "accuracy": 0.997399028316239}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90701b50f4b917fe1021065442cac41f3b7840e3fb09024c76915bf1e4239040
3
+ size 1112921036
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dfb050a791440edd96515d1177ebd40dd7fc24c9169ac1cef5188e040640cf8
3
+ size 5304