haryoaw commited on
Commit
82c3fa3
1 Parent(s): 8ec2ee6

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +117 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1451
25
+ - Precision: 0.8545
26
+ - Recall: 0.8580
27
+ - F1: 0.8562
28
+ - Accuracy: 0.9846
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0099 | 0.5828 | 500 | 0.0855 | 0.8429 | 0.8336 | 0.8382 | 0.9835 |
60
+ | 0.0104 | 1.1655 | 1000 | 0.0903 | 0.8392 | 0.8524 | 0.8458 | 0.9841 |
61
+ | 0.0085 | 1.7483 | 1500 | 0.0941 | 0.8319 | 0.8524 | 0.8420 | 0.9835 |
62
+ | 0.0076 | 2.3310 | 2000 | 0.1037 | 0.8424 | 0.8443 | 0.8433 | 0.9832 |
63
+ | 0.0071 | 2.9138 | 2500 | 0.0983 | 0.8252 | 0.8550 | 0.8399 | 0.9831 |
64
+ | 0.007 | 3.4965 | 3000 | 0.0964 | 0.8389 | 0.8547 | 0.8467 | 0.9834 |
65
+ | 0.0059 | 4.0793 | 3500 | 0.0988 | 0.8418 | 0.8510 | 0.8464 | 0.9839 |
66
+ | 0.0051 | 4.6620 | 4000 | 0.1094 | 0.8410 | 0.8472 | 0.8441 | 0.9833 |
67
+ | 0.0055 | 5.2448 | 4500 | 0.1039 | 0.8380 | 0.8521 | 0.8450 | 0.9834 |
68
+ | 0.0043 | 5.8275 | 5000 | 0.1120 | 0.8416 | 0.8362 | 0.8389 | 0.9827 |
69
+ | 0.0046 | 6.4103 | 5500 | 0.1148 | 0.8447 | 0.8450 | 0.8449 | 0.9833 |
70
+ | 0.004 | 6.9930 | 6000 | 0.1135 | 0.8323 | 0.8491 | 0.8406 | 0.9832 |
71
+ | 0.0036 | 7.5758 | 6500 | 0.1127 | 0.8556 | 0.8377 | 0.8465 | 0.9835 |
72
+ | 0.0031 | 8.1585 | 7000 | 0.1192 | 0.8365 | 0.8489 | 0.8427 | 0.9835 |
73
+ | 0.0029 | 8.7413 | 7500 | 0.1280 | 0.8403 | 0.8540 | 0.8471 | 0.9834 |
74
+ | 0.0035 | 9.3240 | 8000 | 0.1272 | 0.8445 | 0.8371 | 0.8408 | 0.9831 |
75
+ | 0.0031 | 9.9068 | 8500 | 0.1132 | 0.8556 | 0.8465 | 0.8510 | 0.9842 |
76
+ | 0.0021 | 10.4895 | 9000 | 0.1302 | 0.8383 | 0.8512 | 0.8447 | 0.9835 |
77
+ | 0.0023 | 11.0723 | 9500 | 0.1264 | 0.8347 | 0.8472 | 0.8409 | 0.9830 |
78
+ | 0.0024 | 11.6550 | 10000 | 0.1191 | 0.8446 | 0.8523 | 0.8484 | 0.9837 |
79
+ | 0.0021 | 12.2378 | 10500 | 0.1301 | 0.8419 | 0.8469 | 0.8444 | 0.9834 |
80
+ | 0.0027 | 12.8205 | 11000 | 0.1231 | 0.8437 | 0.8541 | 0.8489 | 0.9840 |
81
+ | 0.002 | 13.4033 | 11500 | 0.1329 | 0.8345 | 0.8482 | 0.8413 | 0.9828 |
82
+ | 0.0017 | 13.9860 | 12000 | 0.1320 | 0.8418 | 0.8575 | 0.8495 | 0.9837 |
83
+ | 0.0016 | 14.5688 | 12500 | 0.1298 | 0.8462 | 0.8439 | 0.8450 | 0.9836 |
84
+ | 0.0016 | 15.1515 | 13000 | 0.1368 | 0.8440 | 0.8274 | 0.8356 | 0.9831 |
85
+ | 0.0019 | 15.7343 | 13500 | 0.1281 | 0.8491 | 0.8453 | 0.8472 | 0.9837 |
86
+ | 0.001 | 16.3170 | 14000 | 0.1348 | 0.8469 | 0.8523 | 0.8496 | 0.9839 |
87
+ | 0.0014 | 16.8998 | 14500 | 0.1345 | 0.8405 | 0.8515 | 0.8460 | 0.9834 |
88
+ | 0.001 | 17.4825 | 15000 | 0.1449 | 0.8449 | 0.8357 | 0.8403 | 0.9833 |
89
+ | 0.0011 | 18.0653 | 15500 | 0.1414 | 0.8478 | 0.8541 | 0.8509 | 0.9840 |
90
+ | 0.0013 | 18.6480 | 16000 | 0.1414 | 0.8486 | 0.8448 | 0.8466 | 0.9837 |
91
+ | 0.001 | 19.2308 | 16500 | 0.1417 | 0.8522 | 0.8549 | 0.8535 | 0.9839 |
92
+ | 0.0011 | 19.8135 | 17000 | 0.1400 | 0.8430 | 0.8474 | 0.8452 | 0.9835 |
93
+ | 0.001 | 20.3963 | 17500 | 0.1369 | 0.8503 | 0.8498 | 0.8501 | 0.9836 |
94
+ | 0.0007 | 20.9790 | 18000 | 0.1349 | 0.8512 | 0.8551 | 0.8532 | 0.9843 |
95
+ | 0.001 | 21.5618 | 18500 | 0.1345 | 0.8532 | 0.8495 | 0.8514 | 0.9843 |
96
+ | 0.0009 | 22.1445 | 19000 | 0.1397 | 0.8585 | 0.8420 | 0.8502 | 0.9843 |
97
+ | 0.0004 | 22.7273 | 19500 | 0.1394 | 0.8522 | 0.8575 | 0.8548 | 0.9846 |
98
+ | 0.0006 | 23.3100 | 20000 | 0.1433 | 0.8470 | 0.8576 | 0.8522 | 0.9843 |
99
+ | 0.0005 | 23.8928 | 20500 | 0.1447 | 0.8526 | 0.8512 | 0.8519 | 0.9841 |
100
+ | 0.0004 | 24.4755 | 21000 | 0.1418 | 0.8492 | 0.8547 | 0.8519 | 0.9843 |
101
+ | 0.0004 | 25.0583 | 21500 | 0.1444 | 0.8546 | 0.8556 | 0.8551 | 0.9845 |
102
+ | 0.0003 | 25.6410 | 22000 | 0.1458 | 0.8527 | 0.8554 | 0.8541 | 0.9843 |
103
+ | 0.0004 | 26.2238 | 22500 | 0.1448 | 0.8541 | 0.8502 | 0.8521 | 0.9843 |
104
+ | 0.0003 | 26.8065 | 23000 | 0.1449 | 0.8474 | 0.8579 | 0.8526 | 0.9842 |
105
+ | 0.0004 | 27.3893 | 23500 | 0.1448 | 0.8553 | 0.8579 | 0.8566 | 0.9846 |
106
+ | 0.0004 | 27.9720 | 24000 | 0.1427 | 0.8589 | 0.8527 | 0.8558 | 0.9844 |
107
+ | 0.0002 | 28.5548 | 24500 | 0.1439 | 0.8541 | 0.8582 | 0.8561 | 0.9846 |
108
+ | 0.0003 | 29.1375 | 25000 | 0.1446 | 0.8564 | 0.8560 | 0.8562 | 0.9847 |
109
+ | 0.0002 | 29.7203 | 25500 | 0.1451 | 0.8545 | 0.8580 | 0.8562 | 0.9846 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.44.2
115
+ - Pytorch 2.1.1+cu121
116
+ - Datasets 2.14.5
117
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.3770491803278688, "recall": 0.46938775510204084, "f1": 0.41818181818181815, "accuracy": 0.9474903474903474}, "en_pud": {"precision": 0.8205625606207565, "recall": 0.7869767441860465, "f1": 0.8034188034188035, "accuracy": 0.9797884397431054}, "de_pud": {"precision": 0.8081395348837209, "recall": 0.8026948989412896, "f1": 0.8054080154514727, "accuracy": 0.9786695419811542}, "pt_pud": {"precision": 0.8744228993536473, "recall": 0.8616924476797089, "f1": 0.8680109990834098, "accuracy": 0.9860298201392745}, "ru_pud": {"precision": 0.7138836772983115, "recall": 0.7345559845559846, "f1": 0.7240723120837299, "accuracy": 0.9725135623869801}, "sv_pud": {"precision": 0.8677196446199408, "recall": 0.8542274052478134, "f1": 0.8609206660137121, "accuracy": 0.9860033550010484}, "tl_trg": {"precision": 0.7142857142857143, "recall": 0.6521739130434783, "f1": 0.6818181818181819, "accuracy": 0.9836512261580381}, "tl_ugnayan": {"precision": 0.631578947368421, "recall": 0.7272727272727273, "f1": 0.676056338028169, "accuracy": 0.9735642661804923}, "zh_gsd": {"precision": 0.8421052631578947, "recall": 0.834419817470665, "f1": 0.8382449246889325, "accuracy": 0.9776889776889777}, "zh_gsdsimp": {"precision": 0.8682795698924731, "recall": 0.8466579292267365, "f1": 0.8573324485733245, "accuracy": 0.9795204795204795}, "hr_set": {"precision": 0.9279151943462898, "recall": 0.9358517462580185, "f1": 0.9318665720369056, "accuracy": 0.9905193734542457}, "da_ddt": {"precision": 0.8372641509433962, "recall": 0.7941834451901566, "f1": 0.8151549942594718, "accuracy": 0.9851341913598723}, "en_ewt": {"precision": 0.8204158790170132, "recall": 0.7977941176470589, "f1": 0.8089468779123952, "accuracy": 0.9801569908754034}, "pt_bosque": {"precision": 0.8616636528028933, "recall": 0.7843621399176954, "f1": 0.8211977595863852, "accuracy": 0.9825387624981887}, "sr_set": {"precision": 0.953405017921147, "recall": 0.9421487603305785, "f1": 0.9477434679334917, "accuracy": 0.9915944313107433}, "sk_snk": {"precision": 0.7711111111111111, "recall": 0.7584699453551913, "f1": 0.7647382920110193, "accuracy": 0.967964824120603}, "sv_talbanken": {"precision": 0.8333333333333334, "recall": 0.9183673469387755, "f1": 0.8737864077669903, "accuracy": 0.997399028316239}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f1e09a4771204c8aba13a45d4539a2cd5429529abd3b2944a13c303a708bddf
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4eea036992b39ae3cee34a267b3e35ca6edbed7df794d6e0a65947e435a466f
3
+ size 5304