haryoaw commited on
Commit
c7e048d
1 Parent(s): 4424c5b

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +60 -60
  2. config.json +2 -2
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
14
  results: []
@@ -19,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
21
 
22
- This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1451
25
- - Precision: 0.8545
26
- - Recall: 0.8580
27
- - F1: 0.8562
28
- - Accuracy: 0.9846
29
 
30
  ## Model description
31
 
@@ -56,57 +56,57 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0099 | 0.5828 | 500 | 0.0855 | 0.8429 | 0.8336 | 0.8382 | 0.9835 |
60
- | 0.0104 | 1.1655 | 1000 | 0.0903 | 0.8392 | 0.8524 | 0.8458 | 0.9841 |
61
- | 0.0085 | 1.7483 | 1500 | 0.0941 | 0.8319 | 0.8524 | 0.8420 | 0.9835 |
62
- | 0.0076 | 2.3310 | 2000 | 0.1037 | 0.8424 | 0.8443 | 0.8433 | 0.9832 |
63
- | 0.0071 | 2.9138 | 2500 | 0.0983 | 0.8252 | 0.8550 | 0.8399 | 0.9831 |
64
- | 0.007 | 3.4965 | 3000 | 0.0964 | 0.8389 | 0.8547 | 0.8467 | 0.9834 |
65
- | 0.0059 | 4.0793 | 3500 | 0.0988 | 0.8418 | 0.8510 | 0.8464 | 0.9839 |
66
- | 0.0051 | 4.6620 | 4000 | 0.1094 | 0.8410 | 0.8472 | 0.8441 | 0.9833 |
67
- | 0.0055 | 5.2448 | 4500 | 0.1039 | 0.8380 | 0.8521 | 0.8450 | 0.9834 |
68
- | 0.0043 | 5.8275 | 5000 | 0.1120 | 0.8416 | 0.8362 | 0.8389 | 0.9827 |
69
- | 0.0046 | 6.4103 | 5500 | 0.1148 | 0.8447 | 0.8450 | 0.8449 | 0.9833 |
70
- | 0.004 | 6.9930 | 6000 | 0.1135 | 0.8323 | 0.8491 | 0.8406 | 0.9832 |
71
- | 0.0036 | 7.5758 | 6500 | 0.1127 | 0.8556 | 0.8377 | 0.8465 | 0.9835 |
72
- | 0.0031 | 8.1585 | 7000 | 0.1192 | 0.8365 | 0.8489 | 0.8427 | 0.9835 |
73
- | 0.0029 | 8.7413 | 7500 | 0.1280 | 0.8403 | 0.8540 | 0.8471 | 0.9834 |
74
- | 0.0035 | 9.3240 | 8000 | 0.1272 | 0.8445 | 0.8371 | 0.8408 | 0.9831 |
75
- | 0.0031 | 9.9068 | 8500 | 0.1132 | 0.8556 | 0.8465 | 0.8510 | 0.9842 |
76
- | 0.0021 | 10.4895 | 9000 | 0.1302 | 0.8383 | 0.8512 | 0.8447 | 0.9835 |
77
- | 0.0023 | 11.0723 | 9500 | 0.1264 | 0.8347 | 0.8472 | 0.8409 | 0.9830 |
78
- | 0.0024 | 11.6550 | 10000 | 0.1191 | 0.8446 | 0.8523 | 0.8484 | 0.9837 |
79
- | 0.0021 | 12.2378 | 10500 | 0.1301 | 0.8419 | 0.8469 | 0.8444 | 0.9834 |
80
- | 0.0027 | 12.8205 | 11000 | 0.1231 | 0.8437 | 0.8541 | 0.8489 | 0.9840 |
81
- | 0.002 | 13.4033 | 11500 | 0.1329 | 0.8345 | 0.8482 | 0.8413 | 0.9828 |
82
- | 0.0017 | 13.9860 | 12000 | 0.1320 | 0.8418 | 0.8575 | 0.8495 | 0.9837 |
83
- | 0.0016 | 14.5688 | 12500 | 0.1298 | 0.8462 | 0.8439 | 0.8450 | 0.9836 |
84
- | 0.0016 | 15.1515 | 13000 | 0.1368 | 0.8440 | 0.8274 | 0.8356 | 0.9831 |
85
- | 0.0019 | 15.7343 | 13500 | 0.1281 | 0.8491 | 0.8453 | 0.8472 | 0.9837 |
86
- | 0.001 | 16.3170 | 14000 | 0.1348 | 0.8469 | 0.8523 | 0.8496 | 0.9839 |
87
- | 0.0014 | 16.8998 | 14500 | 0.1345 | 0.8405 | 0.8515 | 0.8460 | 0.9834 |
88
- | 0.001 | 17.4825 | 15000 | 0.1449 | 0.8449 | 0.8357 | 0.8403 | 0.9833 |
89
- | 0.0011 | 18.0653 | 15500 | 0.1414 | 0.8478 | 0.8541 | 0.8509 | 0.9840 |
90
- | 0.0013 | 18.6480 | 16000 | 0.1414 | 0.8486 | 0.8448 | 0.8466 | 0.9837 |
91
- | 0.001 | 19.2308 | 16500 | 0.1417 | 0.8522 | 0.8549 | 0.8535 | 0.9839 |
92
- | 0.0011 | 19.8135 | 17000 | 0.1400 | 0.8430 | 0.8474 | 0.8452 | 0.9835 |
93
- | 0.001 | 20.3963 | 17500 | 0.1369 | 0.8503 | 0.8498 | 0.8501 | 0.9836 |
94
- | 0.0007 | 20.9790 | 18000 | 0.1349 | 0.8512 | 0.8551 | 0.8532 | 0.9843 |
95
- | 0.001 | 21.5618 | 18500 | 0.1345 | 0.8532 | 0.8495 | 0.8514 | 0.9843 |
96
- | 0.0009 | 22.1445 | 19000 | 0.1397 | 0.8585 | 0.8420 | 0.8502 | 0.9843 |
97
- | 0.0004 | 22.7273 | 19500 | 0.1394 | 0.8522 | 0.8575 | 0.8548 | 0.9846 |
98
- | 0.0006 | 23.3100 | 20000 | 0.1433 | 0.8470 | 0.8576 | 0.8522 | 0.9843 |
99
- | 0.0005 | 23.8928 | 20500 | 0.1447 | 0.8526 | 0.8512 | 0.8519 | 0.9841 |
100
- | 0.0004 | 24.4755 | 21000 | 0.1418 | 0.8492 | 0.8547 | 0.8519 | 0.9843 |
101
- | 0.0004 | 25.0583 | 21500 | 0.1444 | 0.8546 | 0.8556 | 0.8551 | 0.9845 |
102
- | 0.0003 | 25.6410 | 22000 | 0.1458 | 0.8527 | 0.8554 | 0.8541 | 0.9843 |
103
- | 0.0004 | 26.2238 | 22500 | 0.1448 | 0.8541 | 0.8502 | 0.8521 | 0.9843 |
104
- | 0.0003 | 26.8065 | 23000 | 0.1449 | 0.8474 | 0.8579 | 0.8526 | 0.9842 |
105
- | 0.0004 | 27.3893 | 23500 | 0.1448 | 0.8553 | 0.8579 | 0.8566 | 0.9846 |
106
- | 0.0004 | 27.9720 | 24000 | 0.1427 | 0.8589 | 0.8527 | 0.8558 | 0.9844 |
107
- | 0.0002 | 28.5548 | 24500 | 0.1439 | 0.8541 | 0.8582 | 0.8561 | 0.9846 |
108
- | 0.0003 | 29.1375 | 25000 | 0.1446 | 0.8564 | 0.8560 | 0.8562 | 0.9847 |
109
- | 0.0002 | 29.7203 | 25500 | 0.1451 | 0.8545 | 0.8580 | 0.8562 | 0.9846 |
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
14
  results: []
 
19
 
20
  # scenario-non-kd-pre-ner-full-xlmr_data-univner_half44
21
 
22
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1692
25
+ - Precision: 0.7997
26
+ - Recall: 0.8083
27
+ - F1: 0.8040
28
+ - Accuracy: 0.9794
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.1456 | 0.5828 | 500 | 0.0795 | 0.7321 | 0.7445 | 0.7383 | 0.9744 |
60
+ | 0.0686 | 1.1655 | 1000 | 0.0786 | 0.7478 | 0.7850 | 0.7660 | 0.9763 |
61
+ | 0.0505 | 1.7483 | 1500 | 0.0765 | 0.7499 | 0.8058 | 0.7768 | 0.9775 |
62
+ | 0.039 | 2.3310 | 2000 | 0.0850 | 0.7407 | 0.8025 | 0.7704 | 0.9759 |
63
+ | 0.0308 | 2.9138 | 2500 | 0.0935 | 0.7340 | 0.8178 | 0.7736 | 0.9755 |
64
+ | 0.0222 | 3.4965 | 3000 | 0.0941 | 0.7587 | 0.8097 | 0.7834 | 0.9776 |
65
+ | 0.0202 | 4.0793 | 3500 | 0.0978 | 0.7615 | 0.8139 | 0.7868 | 0.9781 |
66
+ | 0.0149 | 4.6620 | 4000 | 0.1010 | 0.7738 | 0.8039 | 0.7886 | 0.9780 |
67
+ | 0.0134 | 5.2448 | 4500 | 0.1072 | 0.7917 | 0.7973 | 0.7945 | 0.9791 |
68
+ | 0.0112 | 5.8275 | 5000 | 0.1023 | 0.7866 | 0.7948 | 0.7907 | 0.9789 |
69
+ | 0.0091 | 6.4103 | 5500 | 0.1151 | 0.7765 | 0.8083 | 0.7921 | 0.9784 |
70
+ | 0.0088 | 6.9930 | 6000 | 0.1144 | 0.7838 | 0.7980 | 0.7908 | 0.9785 |
71
+ | 0.0077 | 7.5758 | 6500 | 0.1150 | 0.7748 | 0.7979 | 0.7862 | 0.9780 |
72
+ | 0.0067 | 8.1585 | 7000 | 0.1191 | 0.7889 | 0.7960 | 0.7924 | 0.9787 |
73
+ | 0.0059 | 8.7413 | 7500 | 0.1269 | 0.7703 | 0.8140 | 0.7916 | 0.9780 |
74
+ | 0.0053 | 9.3240 | 8000 | 0.1267 | 0.7857 | 0.7944 | 0.7900 | 0.9784 |
75
+ | 0.0053 | 9.9068 | 8500 | 0.1273 | 0.7957 | 0.7928 | 0.7942 | 0.9788 |
76
+ | 0.0043 | 10.4895 | 9000 | 0.1321 | 0.7772 | 0.7990 | 0.7879 | 0.9782 |
77
+ | 0.0039 | 11.0723 | 9500 | 0.1313 | 0.7940 | 0.7945 | 0.7943 | 0.9789 |
78
+ | 0.0033 | 11.6550 | 10000 | 0.1361 | 0.7964 | 0.8031 | 0.7997 | 0.9788 |
79
+ | 0.0033 | 12.2378 | 10500 | 0.1394 | 0.7828 | 0.8057 | 0.7941 | 0.9785 |
80
+ | 0.0032 | 12.8205 | 11000 | 0.1445 | 0.7760 | 0.7928 | 0.7843 | 0.9781 |
81
+ | 0.0029 | 13.4033 | 11500 | 0.1358 | 0.7833 | 0.8083 | 0.7956 | 0.9789 |
82
+ | 0.003 | 13.9860 | 12000 | 0.1383 | 0.7830 | 0.8031 | 0.7929 | 0.9787 |
83
+ | 0.0024 | 14.5688 | 12500 | 0.1403 | 0.7731 | 0.8130 | 0.7925 | 0.9779 |
84
+ | 0.0028 | 15.1515 | 13000 | 0.1423 | 0.7998 | 0.7956 | 0.7977 | 0.9789 |
85
+ | 0.0021 | 15.7343 | 13500 | 0.1443 | 0.7831 | 0.8062 | 0.7945 | 0.9785 |
86
+ | 0.002 | 16.3170 | 14000 | 0.1396 | 0.7815 | 0.8088 | 0.7950 | 0.9785 |
87
+ | 0.0018 | 16.8998 | 14500 | 0.1469 | 0.7808 | 0.8072 | 0.7938 | 0.9783 |
88
+ | 0.0019 | 17.4825 | 15000 | 0.1450 | 0.7969 | 0.8029 | 0.7999 | 0.9790 |
89
+ | 0.0018 | 18.0653 | 15500 | 0.1516 | 0.7906 | 0.8098 | 0.8001 | 0.9788 |
90
+ | 0.0011 | 18.6480 | 16000 | 0.1591 | 0.7810 | 0.8093 | 0.7949 | 0.9787 |
91
+ | 0.0014 | 19.2308 | 16500 | 0.1561 | 0.8002 | 0.8051 | 0.8026 | 0.9791 |
92
+ | 0.0011 | 19.8135 | 17000 | 0.1568 | 0.7901 | 0.8093 | 0.7996 | 0.9788 |
93
+ | 0.0013 | 20.3963 | 17500 | 0.1573 | 0.7980 | 0.7950 | 0.7965 | 0.9790 |
94
+ | 0.001 | 20.9790 | 18000 | 0.1566 | 0.7987 | 0.7915 | 0.7951 | 0.9787 |
95
+ | 0.001 | 21.5618 | 18500 | 0.1594 | 0.7926 | 0.8041 | 0.7983 | 0.9787 |
96
+ | 0.001 | 22.1445 | 19000 | 0.1616 | 0.8068 | 0.7899 | 0.7983 | 0.9790 |
97
+ | 0.0011 | 22.7273 | 19500 | 0.1644 | 0.7908 | 0.8098 | 0.8002 | 0.9788 |
98
+ | 0.0007 | 23.3100 | 20000 | 0.1628 | 0.7870 | 0.8018 | 0.7943 | 0.9788 |
99
+ | 0.0008 | 23.8928 | 20500 | 0.1615 | 0.7960 | 0.7995 | 0.7977 | 0.9787 |
100
+ | 0.0006 | 24.4755 | 21000 | 0.1614 | 0.8002 | 0.7993 | 0.7998 | 0.9790 |
101
+ | 0.0007 | 25.0583 | 21500 | 0.1612 | 0.8001 | 0.7979 | 0.7990 | 0.9791 |
102
+ | 0.0005 | 25.6410 | 22000 | 0.1627 | 0.7940 | 0.8104 | 0.8021 | 0.9791 |
103
+ | 0.0005 | 26.2238 | 22500 | 0.1664 | 0.7945 | 0.8062 | 0.8003 | 0.9793 |
104
+ | 0.0005 | 26.8065 | 23000 | 0.1663 | 0.7871 | 0.8175 | 0.8020 | 0.9792 |
105
+ | 0.0004 | 27.3893 | 23500 | 0.1691 | 0.8037 | 0.8091 | 0.8064 | 0.9796 |
106
+ | 0.0005 | 27.9720 | 24000 | 0.1684 | 0.7979 | 0.8087 | 0.8032 | 0.9794 |
107
+ | 0.0003 | 28.5548 | 24500 | 0.1686 | 0.7999 | 0.8064 | 0.8031 | 0.9793 |
108
+ | 0.0004 | 29.1375 | 25000 | 0.1692 | 0.8005 | 0.8081 | 0.8043 | 0.9794 |
109
+ | 0.0003 | 29.7203 | 25500 | 0.1692 | 0.7997 | 0.8083 | 0.8040 | 0.9794 |
110
 
111
 
112
  ### Framework versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
  "XLMRobertaForTokenClassification"
5
  ],
@@ -34,7 +34,7 @@
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
- "num_hidden_layers": 12,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
 
1
  {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
3
  "architectures": [
4
  "XLMRobertaForTokenClassification"
5
  ],
 
34
  "max_position_embeddings": 514,
35
  "model_type": "xlm-roberta",
36
  "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
  "output_past": true,
39
  "pad_token_id": 1,
40
  "position_embedding_type": "absolute",
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.3770491803278688, "recall": 0.46938775510204084, "f1": 0.41818181818181815, "accuracy": 0.9474903474903474}, "en_pud": {"precision": 0.8205625606207565, "recall": 0.7869767441860465, "f1": 0.8034188034188035, "accuracy": 0.9797884397431054}, "de_pud": {"precision": 0.8081395348837209, "recall": 0.8026948989412896, "f1": 0.8054080154514727, "accuracy": 0.9786695419811542}, "pt_pud": {"precision": 0.8744228993536473, "recall": 0.8616924476797089, "f1": 0.8680109990834098, "accuracy": 0.9860298201392745}, "ru_pud": {"precision": 0.7138836772983115, "recall": 0.7345559845559846, "f1": 0.7240723120837299, "accuracy": 0.9725135623869801}, "sv_pud": {"precision": 0.8677196446199408, "recall": 0.8542274052478134, "f1": 0.8609206660137121, "accuracy": 0.9860033550010484}, "tl_trg": {"precision": 0.7142857142857143, "recall": 0.6521739130434783, "f1": 0.6818181818181819, "accuracy": 0.9836512261580381}, "tl_ugnayan": {"precision": 0.631578947368421, "recall": 0.7272727272727273, "f1": 0.676056338028169, "accuracy": 0.9735642661804923}, "zh_gsd": {"precision": 0.8421052631578947, "recall": 0.834419817470665, "f1": 0.8382449246889325, "accuracy": 0.9776889776889777}, "zh_gsdsimp": {"precision": 0.8682795698924731, "recall": 0.8466579292267365, "f1": 0.8573324485733245, "accuracy": 0.9795204795204795}, "hr_set": {"precision": 0.9279151943462898, "recall": 0.9358517462580185, "f1": 0.9318665720369056, "accuracy": 0.9905193734542457}, "da_ddt": {"precision": 0.8372641509433962, "recall": 0.7941834451901566, "f1": 0.8151549942594718, "accuracy": 0.9851341913598723}, "en_ewt": {"precision": 0.8204158790170132, "recall": 0.7977941176470589, "f1": 0.8089468779123952, "accuracy": 0.9801569908754034}, "pt_bosque": {"precision": 0.8616636528028933, "recall": 0.7843621399176954, "f1": 0.8211977595863852, "accuracy": 0.9825387624981887}, "sr_set": {"precision": 0.953405017921147, "recall": 0.9421487603305785, "f1": 0.9477434679334917, "accuracy": 0.9915944313107433}, "sk_snk": {"precision": 0.7711111111111111, "recall": 0.7584699453551913, "f1": 0.7647382920110193, "accuracy": 0.967964824120603}, "sv_talbanken": {"precision": 0.8333333333333334, "recall": 0.9183673469387755, "f1": 0.8737864077669903, "accuracy": 0.997399028316239}}
 
1
+ {"ceb_gja": {"precision": 0.44155844155844154, "recall": 0.6938775510204082, "f1": 0.5396825396825397, "accuracy": 0.9536679536679536}, "en_pud": {"precision": 0.7821393523061825, "recall": 0.7413953488372093, "f1": 0.761222540592168, "accuracy": 0.9770494899886664}, "de_pud": {"precision": 0.7226415094339622, "recall": 0.737247353224254, "f1": 0.7298713673177702, "accuracy": 0.9713093619614646}, "pt_pud": {"precision": 0.8009478672985783, "recall": 0.7688808007279345, "f1": 0.7845868152274839, "accuracy": 0.9790233690776263}, "ru_pud": {"precision": 0.6575984990619137, "recall": 0.6766409266409267, "f1": 0.6669838249286395, "accuracy": 0.967036941358822}, "sv_pud": {"precision": 0.8170974155069582, "recall": 0.7988338192419825, "f1": 0.8078624078624078, "accuracy": 0.980866009645628}, "tl_trg": {"precision": 0.7307692307692307, "recall": 0.8260869565217391, "f1": 0.7755102040816326, "accuracy": 0.9850136239782016}, "tl_ugnayan": {"precision": 0.5, "recall": 0.6363636363636364, "f1": 0.56, "accuracy": 0.9662716499544212}, "zh_gsd": {"precision": 0.8070866141732284, "recall": 0.8018252933507171, "f1": 0.8044473512099413, "accuracy": 0.9731102231102231}, "zh_gsdsimp": {"precision": 0.7866666666666666, "recall": 0.7732634338138925, "f1": 0.7799074686054197, "accuracy": 0.970945720945721}, "hr_set": {"precision": 0.88, "recall": 0.8937990021382751, "f1": 0.8868458274398867, "accuracy": 0.9869332234130256}, "da_ddt": {"precision": 0.8029556650246306, "recall": 0.7293064876957495, "f1": 0.7643610785463072, "accuracy": 0.9820413049985034}, "en_ewt": {"precision": 0.7806324110671937, "recall": 0.7261029411764706, "f1": 0.7523809523809524, "accuracy": 0.9753356974937244}, "pt_bosque": {"precision": 0.7879078694817658, "recall": 0.6757201646090535, "f1": 0.7275143996455471, "accuracy": 0.9738443703811042}, "sr_set": {"precision": 0.8980070339976554, "recall": 0.9043683589138135, "f1": 0.9011764705882354, "accuracy": 0.9861658348655985}, "sk_snk": {"precision": 0.6898096304591266, "recall": 0.673224043715847, "f1": 0.6814159292035399, "accuracy": 0.9559516331658291}, "sv_talbanken": {"precision": 0.7918552036199095, "recall": 0.8928571428571429, "f1": 0.8393285371702638, "accuracy": 0.9969573538793738}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f1e09a4771204c8aba13a45d4539a2cd5429529abd3b2944a13c303a708bddf
3
- size 1109857804
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26f2974bfb9657e83be944b2972da40403ccb9aeaa9a39bfad9c676cefae08e
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a4eea036992b39ae3cee34a267b3e35ca6edbed7df794d6e0a65947e435a466f
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d331eaea4cfc5faa7dabd2d16d5b830e3c081271a5e949c2b5a0d71bf21ea3
3
  size 5304