--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half44 results: [] --- # scenario-non-kd-pre-ner-full-xlmr_data-univner_half44 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1692 - Precision: 0.7997 - Recall: 0.8083 - F1: 0.8040 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1456 | 0.5828 | 500 | 0.0795 | 0.7321 | 0.7445 | 0.7383 | 0.9744 | | 0.0686 | 1.1655 | 1000 | 0.0786 | 0.7478 | 0.7850 | 0.7660 | 0.9763 | | 0.0505 | 1.7483 | 1500 | 0.0765 | 0.7499 | 0.8058 | 0.7768 | 0.9775 | | 0.039 | 2.3310 | 2000 | 0.0850 | 0.7407 | 0.8025 | 0.7704 | 0.9759 | | 0.0308 | 2.9138 | 2500 | 0.0935 | 0.7340 | 0.8178 | 0.7736 | 0.9755 | | 0.0222 | 3.4965 | 3000 | 0.0941 | 0.7587 | 0.8097 | 0.7834 | 0.9776 | | 0.0202 | 4.0793 | 3500 | 0.0978 | 0.7615 | 0.8139 | 0.7868 | 0.9781 | | 0.0149 | 4.6620 | 4000 | 0.1010 | 0.7738 | 0.8039 | 0.7886 | 0.9780 | | 0.0134 | 5.2448 | 4500 | 0.1072 | 0.7917 | 0.7973 | 0.7945 | 0.9791 | | 0.0112 | 5.8275 | 5000 | 0.1023 | 0.7866 | 0.7948 | 0.7907 | 0.9789 | | 0.0091 | 6.4103 | 5500 | 0.1151 | 0.7765 | 0.8083 | 0.7921 | 0.9784 | | 0.0088 | 6.9930 | 6000 | 0.1144 | 0.7838 | 0.7980 | 0.7908 | 0.9785 | | 0.0077 | 7.5758 | 6500 | 0.1150 | 0.7748 | 0.7979 | 0.7862 | 0.9780 | | 0.0067 | 8.1585 | 7000 | 0.1191 | 0.7889 | 0.7960 | 0.7924 | 0.9787 | | 0.0059 | 8.7413 | 7500 | 0.1269 | 0.7703 | 0.8140 | 0.7916 | 0.9780 | | 0.0053 | 9.3240 | 8000 | 0.1267 | 0.7857 | 0.7944 | 0.7900 | 0.9784 | | 0.0053 | 9.9068 | 8500 | 0.1273 | 0.7957 | 0.7928 | 0.7942 | 0.9788 | | 0.0043 | 10.4895 | 9000 | 0.1321 | 0.7772 | 0.7990 | 0.7879 | 0.9782 | | 0.0039 | 11.0723 | 9500 | 0.1313 | 0.7940 | 0.7945 | 0.7943 | 0.9789 | | 0.0033 | 11.6550 | 10000 | 0.1361 | 0.7964 | 0.8031 | 0.7997 | 0.9788 | | 0.0033 | 12.2378 | 10500 | 0.1394 | 0.7828 | 0.8057 | 0.7941 | 0.9785 | | 0.0032 | 12.8205 | 11000 | 0.1445 | 0.7760 | 0.7928 | 0.7843 | 0.9781 | | 0.0029 | 13.4033 | 11500 | 0.1358 | 0.7833 | 0.8083 | 0.7956 | 0.9789 | | 0.003 | 13.9860 | 12000 | 0.1383 | 0.7830 | 0.8031 | 0.7929 | 0.9787 | | 0.0024 | 14.5688 | 12500 | 0.1403 | 0.7731 | 0.8130 | 0.7925 | 0.9779 | | 0.0028 | 15.1515 | 13000 | 0.1423 | 0.7998 | 0.7956 | 0.7977 | 0.9789 | | 0.0021 | 15.7343 | 13500 | 0.1443 | 0.7831 | 0.8062 | 0.7945 | 0.9785 | | 0.002 | 16.3170 | 14000 | 0.1396 | 0.7815 | 0.8088 | 0.7950 | 0.9785 | | 0.0018 | 16.8998 | 14500 | 0.1469 | 0.7808 | 0.8072 | 0.7938 | 0.9783 | | 0.0019 | 17.4825 | 15000 | 0.1450 | 0.7969 | 0.8029 | 0.7999 | 0.9790 | | 0.0018 | 18.0653 | 15500 | 0.1516 | 0.7906 | 0.8098 | 0.8001 | 0.9788 | | 0.0011 | 18.6480 | 16000 | 0.1591 | 0.7810 | 0.8093 | 0.7949 | 0.9787 | | 0.0014 | 19.2308 | 16500 | 0.1561 | 0.8002 | 0.8051 | 0.8026 | 0.9791 | | 0.0011 | 19.8135 | 17000 | 0.1568 | 0.7901 | 0.8093 | 0.7996 | 0.9788 | | 0.0013 | 20.3963 | 17500 | 0.1573 | 0.7980 | 0.7950 | 0.7965 | 0.9790 | | 0.001 | 20.9790 | 18000 | 0.1566 | 0.7987 | 0.7915 | 0.7951 | 0.9787 | | 0.001 | 21.5618 | 18500 | 0.1594 | 0.7926 | 0.8041 | 0.7983 | 0.9787 | | 0.001 | 22.1445 | 19000 | 0.1616 | 0.8068 | 0.7899 | 0.7983 | 0.9790 | | 0.0011 | 22.7273 | 19500 | 0.1644 | 0.7908 | 0.8098 | 0.8002 | 0.9788 | | 0.0007 | 23.3100 | 20000 | 0.1628 | 0.7870 | 0.8018 | 0.7943 | 0.9788 | | 0.0008 | 23.8928 | 20500 | 0.1615 | 0.7960 | 0.7995 | 0.7977 | 0.9787 | | 0.0006 | 24.4755 | 21000 | 0.1614 | 0.8002 | 0.7993 | 0.7998 | 0.9790 | | 0.0007 | 25.0583 | 21500 | 0.1612 | 0.8001 | 0.7979 | 0.7990 | 0.9791 | | 0.0005 | 25.6410 | 22000 | 0.1627 | 0.7940 | 0.8104 | 0.8021 | 0.9791 | | 0.0005 | 26.2238 | 22500 | 0.1664 | 0.7945 | 0.8062 | 0.8003 | 0.9793 | | 0.0005 | 26.8065 | 23000 | 0.1663 | 0.7871 | 0.8175 | 0.8020 | 0.9792 | | 0.0004 | 27.3893 | 23500 | 0.1691 | 0.8037 | 0.8091 | 0.8064 | 0.9796 | | 0.0005 | 27.9720 | 24000 | 0.1684 | 0.7979 | 0.8087 | 0.8032 | 0.9794 | | 0.0003 | 28.5548 | 24500 | 0.1686 | 0.7999 | 0.8064 | 0.8031 | 0.9793 | | 0.0004 | 29.1375 | 25000 | 0.1692 | 0.8005 | 0.8081 | 0.8043 | 0.9794 | | 0.0003 | 29.7203 | 25500 | 0.1692 | 0.7997 | 0.8083 | 0.8040 | 0.9794 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1