haryoaw commited on
Commit
f80157a
1 Parent(s): 35d30bf

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +96 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half55
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-pre-ner-full-xlmr_data-univner_half55
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1450
25
+ - Precision: 0.8516
26
+ - Recall: 0.8357
27
+ - F1: 0.8436
28
+ - Accuracy: 0.9832
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 55
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0106 | 0.5828 | 500 | 0.0804 | 0.8385 | 0.8489 | 0.8437 | 0.9838 |
60
+ | 0.0101 | 1.1655 | 1000 | 0.0863 | 0.8549 | 0.8432 | 0.8490 | 0.9838 |
61
+ | 0.009 | 1.7483 | 1500 | 0.0960 | 0.8282 | 0.8557 | 0.8418 | 0.9829 |
62
+ | 0.0077 | 2.3310 | 2000 | 0.1040 | 0.8320 | 0.8498 | 0.8408 | 0.9827 |
63
+ | 0.0077 | 2.9138 | 2500 | 0.0931 | 0.8461 | 0.8478 | 0.8469 | 0.9835 |
64
+ | 0.0054 | 3.4965 | 3000 | 0.0982 | 0.8482 | 0.8523 | 0.8502 | 0.9843 |
65
+ | 0.0061 | 4.0793 | 3500 | 0.1075 | 0.8450 | 0.8355 | 0.8402 | 0.9832 |
66
+ | 0.0053 | 4.6620 | 4000 | 0.1068 | 0.8409 | 0.8536 | 0.8472 | 0.9839 |
67
+ | 0.0047 | 5.2448 | 4500 | 0.1073 | 0.8372 | 0.8592 | 0.8480 | 0.9837 |
68
+ | 0.0047 | 5.8275 | 5000 | 0.1100 | 0.8451 | 0.8585 | 0.8517 | 0.9839 |
69
+ | 0.0034 | 6.4103 | 5500 | 0.1167 | 0.8350 | 0.8497 | 0.8422 | 0.9832 |
70
+ | 0.0034 | 6.9930 | 6000 | 0.1122 | 0.8405 | 0.8478 | 0.8441 | 0.9836 |
71
+ | 0.0035 | 7.5758 | 6500 | 0.1125 | 0.8424 | 0.8419 | 0.8421 | 0.9834 |
72
+ | 0.0032 | 8.1585 | 7000 | 0.1145 | 0.8454 | 0.8504 | 0.8479 | 0.9836 |
73
+ | 0.0035 | 8.7413 | 7500 | 0.1075 | 0.8499 | 0.8407 | 0.8453 | 0.9838 |
74
+ | 0.0027 | 9.3240 | 8000 | 0.1213 | 0.8493 | 0.8384 | 0.8438 | 0.9837 |
75
+ | 0.0031 | 9.9068 | 8500 | 0.1083 | 0.8551 | 0.8440 | 0.8495 | 0.9842 |
76
+ | 0.0027 | 10.4895 | 9000 | 0.1273 | 0.8329 | 0.8639 | 0.8482 | 0.9835 |
77
+ | 0.0024 | 11.0723 | 9500 | 0.1247 | 0.8478 | 0.8411 | 0.8444 | 0.9834 |
78
+ | 0.0021 | 11.6550 | 10000 | 0.1161 | 0.8487 | 0.8378 | 0.8432 | 0.9838 |
79
+ | 0.0019 | 12.2378 | 10500 | 0.1284 | 0.8316 | 0.8556 | 0.8434 | 0.9830 |
80
+ | 0.0021 | 12.8205 | 11000 | 0.1208 | 0.8492 | 0.8510 | 0.8501 | 0.9840 |
81
+ | 0.0015 | 13.4033 | 11500 | 0.1266 | 0.8374 | 0.8499 | 0.8436 | 0.9830 |
82
+ | 0.002 | 13.9860 | 12000 | 0.1236 | 0.8403 | 0.8530 | 0.8466 | 0.9832 |
83
+ | 0.0016 | 14.5688 | 12500 | 0.1313 | 0.8453 | 0.8409 | 0.8430 | 0.9833 |
84
+ | 0.0013 | 15.1515 | 13000 | 0.1362 | 0.8460 | 0.8482 | 0.8471 | 0.9835 |
85
+ | 0.0015 | 15.7343 | 13500 | 0.1246 | 0.8480 | 0.8511 | 0.8496 | 0.9840 |
86
+ | 0.0012 | 16.3170 | 14000 | 0.1335 | 0.8549 | 0.8423 | 0.8485 | 0.9837 |
87
+ | 0.0014 | 16.8998 | 14500 | 0.1265 | 0.8445 | 0.8433 | 0.8439 | 0.9833 |
88
+ | 0.0009 | 17.4825 | 15000 | 0.1450 | 0.8516 | 0.8357 | 0.8436 | 0.9832 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.44.2
94
+ - Pytorch 2.1.1+cu121
95
+ - Datasets 2.14.5
96
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.5542168674698795, "recall": 0.9387755102040817, "f1": 0.6969696969696971, "accuracy": 0.9683397683397683}, "en_pud": {"precision": 0.8, "recall": 0.8037209302325582, "f1": 0.8018561484918794, "accuracy": 0.9800245561012467}, "de_pud": {"precision": 0.7734303912647862, "recall": 0.8180943214629451, "f1": 0.7951356407857811, "accuracy": 0.9769818573906521}, "pt_pud": {"precision": 0.8683974932855864, "recall": 0.8826205641492265, "f1": 0.875451263537906, "accuracy": 0.9871405989661213}, "ru_pud": {"precision": 0.7193140794223827, "recall": 0.7693050193050193, "f1": 0.7434701492537313, "accuracy": 0.9733918884009299}, "sv_pud": {"precision": 0.8602661596958175, "recall": 0.8794946550048591, "f1": 0.8697741470446901, "accuracy": 0.9863703082407214}, "tl_trg": {"precision": 0.9166666666666666, "recall": 0.9565217391304348, "f1": 0.9361702127659574, "accuracy": 0.9959128065395095}, "tl_ugnayan": {"precision": 0.6923076923076923, "recall": 0.8181818181818182, "f1": 0.7500000000000001, "accuracy": 0.9808568824065633}, "zh_gsd": {"precision": 0.8696219035202086, "recall": 0.8696219035202086, "f1": 0.8696219035202086, "accuracy": 0.9805194805194806}, "zh_gsdsimp": {"precision": 0.8620236530880421, "recall": 0.8597640891218873, "f1": 0.8608923884514434, "accuracy": 0.97993672993673}, "hr_set": {"precision": 0.9109730848861284, "recall": 0.9408410548823949, "f1": 0.9256661991584852, "accuracy": 0.9897774113767519}, "da_ddt": {"precision": 0.8486238532110092, "recall": 0.8277404921700223, "f1": 0.8380520951302378, "accuracy": 0.9881273071934551}, "en_ewt": {"precision": 0.8045574057843996, "recall": 0.84375, "f1": 0.8236877523553163, "accuracy": 0.9815914252699526}, "pt_bosque": {"precision": 0.878657487091222, "recall": 0.8403292181069959, "f1": 0.8590660496424064, "accuracy": 0.986306332415592}, "sr_set": {"precision": 0.9523241954707986, "recall": 0.9433293978748524, "f1": 0.9478054567022538, "accuracy": 0.9898432711671482}, "sk_snk": {"precision": 0.7984749455337691, "recall": 0.8010928961748633, "f1": 0.7997817785051827, "accuracy": 0.9707914572864321}, "sv_talbanken": {"precision": 0.8497652582159625, "recall": 0.923469387755102, "f1": 0.8850855745721271, "accuracy": 0.9977425528782451}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f413f2a0395de218455d609296d85d9bc8056925319fa2068b2aaabb02c367a0
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f2b557dafab528d18f935b242bf05f6e8a44c428f5f8eb27604d8202961468c
3
+ size 5304