haryoaw commited on
Commit
19347e4
1 Parent(s): 59ad7f1

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +49 -65
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: microsoft/mdeberta-v3-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-mdeberta_data-univner_full44
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3192
25
- - Precision: 0.6332
26
- - Recall: 0.5988
27
- - F1: 0.6155
28
- - Accuracy: 0.9635
29
 
30
  ## Model description
31
 
@@ -56,63 +56,47 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.3099 | 0.2910 | 500 | 0.2415 | 0.3566 | 0.1916 | 0.2493 | 0.9346 |
60
- | 0.1989 | 0.5821 | 1000 | 0.1860 | 0.3966 | 0.3665 | 0.3809 | 0.9456 |
61
- | 0.1472 | 0.8731 | 1500 | 0.1610 | 0.4954 | 0.4693 | 0.4820 | 0.9531 |
62
- | 0.1077 | 1.1641 | 2000 | 0.1521 | 0.5274 | 0.5393 | 0.5333 | 0.9569 |
63
- | 0.0887 | 1.4552 | 2500 | 0.1479 | 0.5439 | 0.5660 | 0.5547 | 0.9583 |
64
- | 0.0833 | 1.7462 | 3000 | 0.1469 | 0.5705 | 0.5253 | 0.5470 | 0.9597 |
65
- | 0.0735 | 2.0373 | 3500 | 0.1439 | 0.5596 | 0.5970 | 0.5777 | 0.9609 |
66
- | 0.0459 | 2.3283 | 4000 | 0.1582 | 0.5913 | 0.5686 | 0.5797 | 0.9610 |
67
- | 0.0469 | 2.6193 | 4500 | 0.1541 | 0.5744 | 0.6148 | 0.5939 | 0.9615 |
68
- | 0.0464 | 2.9104 | 5000 | 0.1514 | 0.6054 | 0.6129 | 0.6091 | 0.9636 |
69
- | 0.0317 | 3.2014 | 5500 | 0.1695 | 0.6052 | 0.5879 | 0.5965 | 0.9625 |
70
- | 0.0259 | 3.4924 | 6000 | 0.1874 | 0.5884 | 0.5685 | 0.5783 | 0.9612 |
71
- | 0.0284 | 3.7835 | 6500 | 0.1728 | 0.5932 | 0.6201 | 0.6063 | 0.9631 |
72
- | 0.0236 | 4.0745 | 7000 | 0.1836 | 0.6034 | 0.6213 | 0.6122 | 0.9635 |
73
- | 0.0165 | 4.3655 | 7500 | 0.1953 | 0.6116 | 0.5918 | 0.6016 | 0.9626 |
74
- | 0.0171 | 4.6566 | 8000 | 0.1909 | 0.5993 | 0.6200 | 0.6095 | 0.9627 |
75
- | 0.0176 | 4.9476 | 8500 | 0.1995 | 0.6051 | 0.6057 | 0.6054 | 0.9628 |
76
- | 0.0114 | 5.2386 | 9000 | 0.2084 | 0.6044 | 0.6237 | 0.6139 | 0.9631 |
77
- | 0.0107 | 5.5297 | 9500 | 0.2138 | 0.6089 | 0.6097 | 0.6093 | 0.9623 |
78
- | 0.0118 | 5.8207 | 10000 | 0.2188 | 0.5925 | 0.6100 | 0.6011 | 0.9618 |
79
- | 0.0102 | 6.1118 | 10500 | 0.2305 | 0.6234 | 0.5946 | 0.6087 | 0.9631 |
80
- | 0.0069 | 6.4028 | 11000 | 0.2301 | 0.5911 | 0.6142 | 0.6024 | 0.9625 |
81
- | 0.0079 | 6.6938 | 11500 | 0.2367 | 0.6094 | 0.6119 | 0.6107 | 0.9624 |
82
- | 0.0081 | 6.9849 | 12000 | 0.2411 | 0.6121 | 0.5732 | 0.5920 | 0.9618 |
83
- | 0.0052 | 7.2759 | 12500 | 0.2544 | 0.5951 | 0.5992 | 0.5971 | 0.9626 |
84
- | 0.0059 | 7.5669 | 13000 | 0.2490 | 0.6226 | 0.5954 | 0.6087 | 0.9631 |
85
- | 0.0057 | 7.8580 | 13500 | 0.2508 | 0.6083 | 0.6070 | 0.6076 | 0.9624 |
86
- | 0.0048 | 8.1490 | 14000 | 0.2659 | 0.6392 | 0.5735 | 0.6046 | 0.9628 |
87
- | 0.0041 | 8.4400 | 14500 | 0.2594 | 0.6000 | 0.6083 | 0.6041 | 0.9622 |
88
- | 0.0047 | 8.7311 | 15000 | 0.2630 | 0.5999 | 0.6139 | 0.6068 | 0.9628 |
89
- | 0.0039 | 9.0221 | 15500 | 0.2770 | 0.6176 | 0.5944 | 0.6058 | 0.9630 |
90
- | 0.0033 | 9.3132 | 16000 | 0.2638 | 0.6219 | 0.6117 | 0.6168 | 0.9638 |
91
- | 0.0033 | 9.6042 | 16500 | 0.2689 | 0.6062 | 0.6138 | 0.6099 | 0.9627 |
92
- | 0.0037 | 9.8952 | 17000 | 0.2710 | 0.6034 | 0.6198 | 0.6115 | 0.9632 |
93
- | 0.0031 | 10.1863 | 17500 | 0.2788 | 0.6137 | 0.5966 | 0.6050 | 0.9626 |
94
- | 0.0022 | 10.4773 | 18000 | 0.2831 | 0.6124 | 0.6122 | 0.6123 | 0.9631 |
95
- | 0.0029 | 10.7683 | 18500 | 0.2800 | 0.6361 | 0.6083 | 0.6219 | 0.9637 |
96
- | 0.0025 | 11.0594 | 19000 | 0.2948 | 0.6136 | 0.5966 | 0.6050 | 0.9624 |
97
- | 0.0021 | 11.3504 | 19500 | 0.2888 | 0.6275 | 0.6024 | 0.6147 | 0.9633 |
98
- | 0.0022 | 11.6414 | 20000 | 0.2829 | 0.6176 | 0.6246 | 0.6211 | 0.9634 |
99
- | 0.0021 | 11.9325 | 20500 | 0.2907 | 0.6279 | 0.6096 | 0.6186 | 0.9633 |
100
- | 0.0017 | 12.2235 | 21000 | 0.3067 | 0.6186 | 0.6045 | 0.6115 | 0.9632 |
101
- | 0.0015 | 12.5146 | 21500 | 0.3029 | 0.6147 | 0.6104 | 0.6126 | 0.9625 |
102
- | 0.0022 | 12.8056 | 22000 | 0.3038 | 0.6093 | 0.6230 | 0.6161 | 0.9630 |
103
- | 0.0017 | 13.0966 | 22500 | 0.3025 | 0.6118 | 0.6119 | 0.6118 | 0.9625 |
104
- | 0.0014 | 13.3877 | 23000 | 0.3071 | 0.6407 | 0.5970 | 0.6181 | 0.9636 |
105
- | 0.0013 | 13.6787 | 23500 | 0.3082 | 0.6325 | 0.6032 | 0.6175 | 0.9632 |
106
- | 0.0015 | 13.9697 | 24000 | 0.3119 | 0.6248 | 0.5952 | 0.6096 | 0.9627 |
107
- | 0.0013 | 14.2608 | 24500 | 0.3149 | 0.6358 | 0.6040 | 0.6195 | 0.9636 |
108
- | 0.0011 | 14.5518 | 25000 | 0.3147 | 0.6165 | 0.6058 | 0.6111 | 0.9631 |
109
- | 0.0014 | 14.8428 | 25500 | 0.3088 | 0.6074 | 0.6128 | 0.6101 | 0.9630 |
110
- | 0.0011 | 15.1339 | 26000 | 0.3060 | 0.6150 | 0.6229 | 0.6189 | 0.9634 |
111
- | 0.0008 | 15.4249 | 26500 | 0.3148 | 0.6219 | 0.6089 | 0.6153 | 0.9633 |
112
- | 0.0008 | 15.7159 | 27000 | 0.3311 | 0.6357 | 0.5765 | 0.6047 | 0.9627 |
113
- | 0.0012 | 16.0070 | 27500 | 0.3238 | 0.6355 | 0.5924 | 0.6132 | 0.9631 |
114
- | 0.0009 | 16.2980 | 28000 | 0.3187 | 0.6016 | 0.6247 | 0.6130 | 0.9631 |
115
- | 0.0011 | 16.5891 | 28500 | 0.3192 | 0.6332 | 0.5988 | 0.6155 | 0.9635 |
116
 
117
 
118
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-mdeberta_data-univner_full44
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3003
25
+ - Precision: 0.6230
26
+ - Recall: 0.5993
27
+ - F1: 0.6109
28
+ - Accuracy: 0.9631
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3129 | 0.2910 | 500 | 0.2430 | 0.3687 | 0.2001 | 0.2594 | 0.9351 |
60
+ | 0.201 | 0.5821 | 1000 | 0.1893 | 0.3603 | 0.3711 | 0.3656 | 0.9430 |
61
+ | 0.1493 | 0.8731 | 1500 | 0.1664 | 0.4946 | 0.4279 | 0.4588 | 0.9519 |
62
+ | 0.1081 | 1.1641 | 2000 | 0.1566 | 0.5297 | 0.5299 | 0.5298 | 0.9563 |
63
+ | 0.0881 | 1.4552 | 2500 | 0.1487 | 0.5472 | 0.5748 | 0.5607 | 0.9581 |
64
+ | 0.0825 | 1.7462 | 3000 | 0.1487 | 0.5918 | 0.5183 | 0.5526 | 0.9594 |
65
+ | 0.0721 | 2.0373 | 3500 | 0.1490 | 0.5893 | 0.5660 | 0.5774 | 0.9613 |
66
+ | 0.0454 | 2.3283 | 4000 | 0.1648 | 0.5981 | 0.5498 | 0.5730 | 0.9609 |
67
+ | 0.0457 | 2.6193 | 4500 | 0.1633 | 0.5882 | 0.5934 | 0.5908 | 0.9617 |
68
+ | 0.046 | 2.9104 | 5000 | 0.1505 | 0.6074 | 0.5959 | 0.6016 | 0.9627 |
69
+ | 0.0302 | 3.2014 | 5500 | 0.1771 | 0.6159 | 0.5788 | 0.5968 | 0.9620 |
70
+ | 0.0249 | 3.4924 | 6000 | 0.1871 | 0.6064 | 0.5751 | 0.5903 | 0.9615 |
71
+ | 0.0271 | 3.7835 | 6500 | 0.1806 | 0.6146 | 0.5882 | 0.6011 | 0.9628 |
72
+ | 0.0235 | 4.0745 | 7000 | 0.1966 | 0.6161 | 0.5804 | 0.5977 | 0.9626 |
73
+ | 0.0152 | 4.3655 | 7500 | 0.2110 | 0.6071 | 0.5887 | 0.5978 | 0.9621 |
74
+ | 0.0165 | 4.6566 | 8000 | 0.1978 | 0.6008 | 0.6174 | 0.6090 | 0.9620 |
75
+ | 0.0164 | 4.9476 | 8500 | 0.2096 | 0.6029 | 0.5750 | 0.5886 | 0.9611 |
76
+ | 0.011 | 5.2386 | 9000 | 0.2174 | 0.6055 | 0.6027 | 0.6041 | 0.9626 |
77
+ | 0.0101 | 5.5297 | 9500 | 0.2234 | 0.5919 | 0.6080 | 0.5999 | 0.9615 |
78
+ | 0.0109 | 5.8207 | 10000 | 0.2246 | 0.6148 | 0.5975 | 0.6060 | 0.9623 |
79
+ | 0.0099 | 6.1118 | 10500 | 0.2228 | 0.6115 | 0.6164 | 0.6139 | 0.9626 |
80
+ | 0.0062 | 6.4028 | 11000 | 0.2401 | 0.6099 | 0.6060 | 0.6079 | 0.9623 |
81
+ | 0.0073 | 6.6938 | 11500 | 0.2560 | 0.6161 | 0.5897 | 0.6026 | 0.9621 |
82
+ | 0.0082 | 6.9849 | 12000 | 0.2488 | 0.6008 | 0.5914 | 0.5960 | 0.9614 |
83
+ | 0.0049 | 7.2759 | 12500 | 0.2573 | 0.6155 | 0.5832 | 0.5989 | 0.9620 |
84
+ | 0.0057 | 7.5669 | 13000 | 0.2583 | 0.6320 | 0.5882 | 0.6093 | 0.9628 |
85
+ | 0.0058 | 7.8580 | 13500 | 0.2601 | 0.6040 | 0.6188 | 0.6113 | 0.9623 |
86
+ | 0.0044 | 8.1490 | 14000 | 0.2676 | 0.5962 | 0.6006 | 0.5984 | 0.9616 |
87
+ | 0.0039 | 8.4400 | 14500 | 0.2747 | 0.6194 | 0.5930 | 0.6059 | 0.9624 |
88
+ | 0.004 | 8.7311 | 15000 | 0.2796 | 0.6080 | 0.5776 | 0.5924 | 0.9614 |
89
+ | 0.0044 | 9.0221 | 15500 | 0.2836 | 0.6095 | 0.5875 | 0.5983 | 0.9623 |
90
+ | 0.0028 | 9.3132 | 16000 | 0.2907 | 0.6315 | 0.5891 | 0.6095 | 0.9631 |
91
+ | 0.003 | 9.6042 | 16500 | 0.2962 | 0.6212 | 0.5787 | 0.5992 | 0.9626 |
92
+ | 0.0038 | 9.8952 | 17000 | 0.2864 | 0.6232 | 0.5823 | 0.6021 | 0.9625 |
93
+ | 0.0029 | 10.1863 | 17500 | 0.2912 | 0.6240 | 0.5892 | 0.6061 | 0.9623 |
94
+ | 0.0023 | 10.4773 | 18000 | 0.2990 | 0.6344 | 0.5728 | 0.6020 | 0.9625 |
95
+ | 0.0028 | 10.7683 | 18500 | 0.2953 | 0.6186 | 0.5965 | 0.6073 | 0.9628 |
96
+ | 0.0021 | 11.0594 | 19000 | 0.2989 | 0.6216 | 0.5988 | 0.6100 | 0.9630 |
97
+ | 0.0017 | 11.3504 | 19500 | 0.3025 | 0.6161 | 0.6057 | 0.6108 | 0.9631 |
98
+ | 0.0023 | 11.6414 | 20000 | 0.2973 | 0.6148 | 0.6057 | 0.6102 | 0.9629 |
99
+ | 0.0021 | 11.9325 | 20500 | 0.3003 | 0.6230 | 0.5993 | 0.6109 | 0.9631 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
 
102
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.35555555555555557, "recall": 0.6530612244897959, "f1": 0.460431654676259, "accuracy": 0.9374517374517375}, "en_pud": {"precision": 0.48772678762006405, "recall": 0.42511627906976746, "f1": 0.4542743538767396, "accuracy": 0.9492822062712505}, "de_pud": {"precision": 0.13964435146443516, "recall": 0.2569778633301251, "f1": 0.1809556082683836, "accuracy": 0.867704280155642}, "pt_pud": {"precision": 0.5922330097087378, "recall": 0.5550500454959054, "f1": 0.5730389854391732, "accuracy": 0.9615072414235057}, "ru_pud": {"precision": 0.019200503619767075, "recall": 0.05888030888030888, "f1": 0.028957987182530266, "accuracy": 0.6966158615344872}, "sv_pud": {"precision": 0.5446009389671361, "recall": 0.33819241982507287, "f1": 0.41726618705035967, "accuracy": 0.946582092681904}, "tl_trg": {"precision": 0.1875, "recall": 0.5217391304347826, "f1": 0.27586206896551724, "accuracy": 0.9100817438692098}, "tl_ugnayan": {"precision": 0.031578947368421054, "recall": 0.09090909090909091, "f1": 0.046875, "accuracy": 0.8842297174111212}, "zh_gsd": {"precision": 0.6054054054054054, "recall": 0.5840938722294654, "f1": 0.5945587259455873, "accuracy": 0.9484681984681985}, "zh_gsdsimp": {"precision": 0.6157024793388429, "recall": 0.5858453473132372, "f1": 0.6004029550033578, "accuracy": 0.9465534465534465}, "hr_set": {"precision": 0.7686189443239335, "recall": 0.7576621525302922, "f1": 0.7631012203876526, "accuracy": 0.9739076669414675}, "da_ddt": {"precision": 0.6824146981627297, "recall": 0.5816554809843401, "f1": 0.6280193236714975, "accuracy": 0.9720642522198942}, "en_ewt": {"precision": 0.6080402010050251, "recall": 0.5560661764705882, "f1": 0.5808929428708592, "accuracy": 0.9618679523449017}, "pt_bosque": {"precision": 0.6541353383458647, "recall": 0.6444444444444445, "f1": 0.6492537313432837, "accuracy": 0.9683741486741052}, "sr_set": {"precision": 0.808284023668639, "recall": 0.8063754427390791, "f1": 0.8073286052009455, "accuracy": 0.9720689957096577}, "sk_snk": {"precision": 0.4407027818448023, "recall": 0.3289617486338798, "f1": 0.376720901126408, "accuracy": 0.9230527638190955}, "sv_talbanken": {"precision": 0.6203208556149733, "recall": 0.5918367346938775, "f1": 0.6057441253263708, "accuracy": 0.9928350591352996}}
 
1
+ {"ceb_gja": {"precision": 0.2711864406779661, "recall": 0.6530612244897959, "f1": 0.3832335329341317, "accuracy": 0.9173745173745174}, "en_pud": {"precision": 0.4605647517039922, "recall": 0.44, "f1": 0.45004757373929594, "accuracy": 0.9471571590479788}, "de_pud": {"precision": 0.11804258498319013, "recall": 0.3041385948026949, "f1": 0.17007534983853603, "accuracy": 0.8365758754863813}, "pt_pud": {"precision": 0.5774774774774775, "recall": 0.5832575068243858, "f1": 0.5803531009506564, "accuracy": 0.9628743538257786}, "ru_pud": {"precision": 0.017737399956738047, "recall": 0.07915057915057915, "f1": 0.02898038522707192, "accuracy": 0.6227848101265823}, "sv_pud": {"precision": 0.5208053691275167, "recall": 0.3770651117589893, "f1": 0.43742953776775645, "accuracy": 0.9470538897043406}, "tl_trg": {"precision": 0.18292682926829268, "recall": 0.6521739130434783, "f1": 0.28571428571428575, "accuracy": 0.8896457765667575}, "tl_ugnayan": {"precision": 0.07317073170731707, "recall": 0.2727272727272727, "f1": 0.11538461538461536, "accuracy": 0.8632634457611669}, "zh_gsd": {"precision": 0.5587529976019184, "recall": 0.6075619295958279, "f1": 0.5821361648969393, "accuracy": 0.9434731934731935}, "zh_gsdsimp": {"precision": 0.5505882352941176, "recall": 0.6133682830930537, "f1": 0.5802851828890266, "accuracy": 0.943972693972694}, "hr_set": {"precision": 0.7477288609364081, "recall": 0.7626514611546685, "f1": 0.7551164431898376, "accuracy": 0.9718878812860676}, "da_ddt": {"precision": 0.6460396039603961, "recall": 0.5838926174496645, "f1": 0.6133960047003526, "accuracy": 0.9724633343310386}, "en_ewt": {"precision": 0.5944333996023857, "recall": 0.5496323529411765, "f1": 0.5711556829035339, "accuracy": 0.9605132087500498}, "pt_bosque": {"precision": 0.6528791565287916, "recall": 0.6625514403292181, "f1": 0.6576797385620915, "accuracy": 0.9688813215476018}, "sr_set": {"precision": 0.8002322880371661, "recall": 0.8134592680047226, "f1": 0.8067915690866511, "accuracy": 0.9715436476665791}, "sk_snk": {"precision": 0.4393305439330544, "recall": 0.3442622950819672, "f1": 0.3860294117647059, "accuracy": 0.922660175879397}, "sv_talbanken": {"precision": 0.5911330049261084, "recall": 0.6122448979591837, "f1": 0.6015037593984963, "accuracy": 0.993522108259312}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:31b1e8ddf6c93ade4c8eb7a5614cfa3f58bd0b72b6deaae1d099969f7434741d
3
  size 942800188
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa6630f7acba8d252787aea30f11a1b45eaad3a7f1a19ec6c1c7d98fcd0f137
3
  size 942800188
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53a3208e67260106b7e70f1f808feb5289f0e3efe80bb33acb9a8eab16bcbef4
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b210a6f128bfd66cc55a75fd32b53f82ad7735898bc6414cc432dee272cc1a
3
  size 5304