haryoaw commited on
Commit
75f7094
1 Parent(s): 245ecbb

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +117 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-scr-ner-full-mdeberta_data-univner_full44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-scr-ner-full-mdeberta_data-univner_full44
21
+
22
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.3159
25
+ - Precision: 0.6317
26
+ - Recall: 0.6096
27
+ - F1: 0.6205
28
+ - Accuracy: 0.9636
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3088 | 0.2910 | 500 | 0.2391 | 0.3299 | 0.2154 | 0.2606 | 0.9344 |
60
+ | 0.1992 | 0.5821 | 1000 | 0.1901 | 0.3635 | 0.3792 | 0.3712 | 0.9430 |
61
+ | 0.1511 | 0.8731 | 1500 | 0.1697 | 0.4865 | 0.4499 | 0.4675 | 0.9520 |
62
+ | 0.1103 | 1.1641 | 2000 | 0.1592 | 0.5109 | 0.5203 | 0.5155 | 0.9553 |
63
+ | 0.09 | 1.4552 | 2500 | 0.1498 | 0.5337 | 0.5649 | 0.5488 | 0.9578 |
64
+ | 0.0852 | 1.7462 | 3000 | 0.1489 | 0.5792 | 0.5224 | 0.5493 | 0.9592 |
65
+ | 0.0739 | 2.0373 | 3500 | 0.1468 | 0.5588 | 0.6070 | 0.5819 | 0.9606 |
66
+ | 0.0469 | 2.3283 | 4000 | 0.1673 | 0.5990 | 0.5625 | 0.5802 | 0.9612 |
67
+ | 0.0479 | 2.6193 | 4500 | 0.1578 | 0.5783 | 0.6139 | 0.5956 | 0.9612 |
68
+ | 0.0472 | 2.9104 | 5000 | 0.1568 | 0.6109 | 0.5914 | 0.6010 | 0.9627 |
69
+ | 0.0318 | 3.2014 | 5500 | 0.1806 | 0.6092 | 0.5807 | 0.5946 | 0.9622 |
70
+ | 0.0271 | 3.4924 | 6000 | 0.1910 | 0.5860 | 0.5659 | 0.5757 | 0.9605 |
71
+ | 0.0289 | 3.7835 | 6500 | 0.1811 | 0.5978 | 0.5990 | 0.5984 | 0.9626 |
72
+ | 0.0246 | 4.0745 | 7000 | 0.1958 | 0.6135 | 0.6027 | 0.6080 | 0.9630 |
73
+ | 0.0165 | 4.3655 | 7500 | 0.2066 | 0.6118 | 0.5927 | 0.6021 | 0.9621 |
74
+ | 0.0177 | 4.6566 | 8000 | 0.2033 | 0.5884 | 0.6018 | 0.5950 | 0.9608 |
75
+ | 0.0178 | 4.9476 | 8500 | 0.2051 | 0.5985 | 0.5956 | 0.5970 | 0.9620 |
76
+ | 0.0117 | 5.2386 | 9000 | 0.2181 | 0.5962 | 0.6174 | 0.6066 | 0.9619 |
77
+ | 0.0107 | 5.5297 | 9500 | 0.2247 | 0.5859 | 0.6119 | 0.5986 | 0.9610 |
78
+ | 0.013 | 5.8207 | 10000 | 0.2253 | 0.6049 | 0.5825 | 0.5935 | 0.9618 |
79
+ | 0.0106 | 6.1118 | 10500 | 0.2280 | 0.6130 | 0.6068 | 0.6099 | 0.9625 |
80
+ | 0.0071 | 6.4028 | 11000 | 0.2321 | 0.6006 | 0.6292 | 0.6146 | 0.9623 |
81
+ | 0.0077 | 6.6938 | 11500 | 0.2497 | 0.5847 | 0.6024 | 0.5934 | 0.9612 |
82
+ | 0.0085 | 6.9849 | 12000 | 0.2421 | 0.5838 | 0.6058 | 0.5946 | 0.9611 |
83
+ | 0.0053 | 7.2759 | 12500 | 0.2562 | 0.6189 | 0.5917 | 0.6050 | 0.9627 |
84
+ | 0.0057 | 7.5669 | 13000 | 0.2602 | 0.5918 | 0.6138 | 0.6026 | 0.9613 |
85
+ | 0.0065 | 7.8580 | 13500 | 0.2531 | 0.6077 | 0.6148 | 0.6112 | 0.9625 |
86
+ | 0.0048 | 8.1490 | 14000 | 0.2634 | 0.6182 | 0.6141 | 0.6161 | 0.9628 |
87
+ | 0.004 | 8.4400 | 14500 | 0.2736 | 0.6197 | 0.5969 | 0.6081 | 0.9622 |
88
+ | 0.0053 | 8.7311 | 15000 | 0.2579 | 0.6194 | 0.6119 | 0.6156 | 0.9633 |
89
+ | 0.0042 | 9.0221 | 15500 | 0.2770 | 0.6223 | 0.6211 | 0.6217 | 0.9633 |
90
+ | 0.003 | 9.3132 | 16000 | 0.2835 | 0.6010 | 0.6081 | 0.6046 | 0.9622 |
91
+ | 0.0031 | 9.6042 | 16500 | 0.2839 | 0.6408 | 0.5954 | 0.6173 | 0.9632 |
92
+ | 0.0035 | 9.8952 | 17000 | 0.2876 | 0.6209 | 0.5996 | 0.6101 | 0.9623 |
93
+ | 0.0034 | 10.1863 | 17500 | 0.2839 | 0.6215 | 0.6044 | 0.6128 | 0.9628 |
94
+ | 0.0026 | 10.4773 | 18000 | 0.2851 | 0.6053 | 0.6187 | 0.6119 | 0.9626 |
95
+ | 0.0032 | 10.7683 | 18500 | 0.2799 | 0.6120 | 0.6068 | 0.6094 | 0.9620 |
96
+ | 0.003 | 11.0594 | 19000 | 0.2912 | 0.6110 | 0.6306 | 0.6207 | 0.9629 |
97
+ | 0.0019 | 11.3504 | 19500 | 0.2963 | 0.6188 | 0.6201 | 0.6194 | 0.9629 |
98
+ | 0.0025 | 11.6414 | 20000 | 0.2876 | 0.6101 | 0.6240 | 0.6170 | 0.9628 |
99
+ | 0.0023 | 11.9325 | 20500 | 0.2940 | 0.6392 | 0.6001 | 0.6190 | 0.9631 |
100
+ | 0.0017 | 12.2235 | 21000 | 0.3056 | 0.6017 | 0.6177 | 0.6096 | 0.9625 |
101
+ | 0.0013 | 12.5146 | 21500 | 0.3127 | 0.6128 | 0.6018 | 0.6072 | 0.9628 |
102
+ | 0.002 | 12.8056 | 22000 | 0.3052 | 0.6160 | 0.6151 | 0.6156 | 0.9630 |
103
+ | 0.0018 | 13.0966 | 22500 | 0.3115 | 0.6279 | 0.5999 | 0.6136 | 0.9629 |
104
+ | 0.0015 | 13.3877 | 23000 | 0.3121 | 0.6125 | 0.6155 | 0.6140 | 0.9628 |
105
+ | 0.0013 | 13.6787 | 23500 | 0.3203 | 0.6193 | 0.6185 | 0.6189 | 0.9629 |
106
+ | 0.0015 | 13.9697 | 24000 | 0.3290 | 0.6329 | 0.6028 | 0.6175 | 0.9629 |
107
+ | 0.0012 | 14.2608 | 24500 | 0.3267 | 0.6123 | 0.6194 | 0.6158 | 0.9625 |
108
+ | 0.0011 | 14.5518 | 25000 | 0.3191 | 0.6213 | 0.6165 | 0.6189 | 0.9633 |
109
+ | 0.0011 | 14.8428 | 25500 | 0.3159 | 0.6317 | 0.6096 | 0.6205 | 0.9636 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.44.2
115
+ - Pytorch 2.1.1+cu121
116
+ - Datasets 2.14.5
117
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mdeberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.3258426966292135, "recall": 0.5918367346938775, "f1": 0.42028985507246375, "accuracy": 0.9366795366795366}, "en_pud": {"precision": 0.465161923454367, "recall": 0.4409302325581395, "f1": 0.45272206303724927, "accuracy": 0.9491405364563656}, "de_pud": {"precision": 0.12272910779168349, "recall": 0.2925890279114533, "f1": 0.17292377701934014, "accuracy": 0.8495147906802306}, "pt_pud": {"precision": 0.5517560073937153, "recall": 0.543221110100091, "f1": 0.547455295735901, "accuracy": 0.9593284060323835}, "ru_pud": {"precision": 0.011727688787185355, "recall": 0.03957528957528957, "f1": 0.01809355692850839, "accuracy": 0.6910875742702144}, "sv_pud": {"precision": 0.4889807162534435, "recall": 0.34499514091350825, "f1": 0.4045584045584046, "accuracy": 0.9470538897043406}, "tl_trg": {"precision": 0.1896551724137931, "recall": 0.4782608695652174, "f1": 0.271604938271605, "accuracy": 0.9250681198910081}, "tl_ugnayan": {"precision": 0.03571428571428571, "recall": 0.09090909090909091, "f1": 0.05128205128205127, "accuracy": 0.8988149498632635}, "zh_gsd": {"precision": 0.5579710144927537, "recall": 0.6023468057366362, "f1": 0.5793103448275863, "accuracy": 0.9457209457209457}, "zh_gsdsimp": {"precision": 0.5735294117647058, "recall": 0.6133682830930537, "f1": 0.5927802406586448, "accuracy": 0.9451381951381952}, "hr_set": {"precision": 0.7432525951557093, "recall": 0.7655024946543122, "f1": 0.7542134831460674, "accuracy": 0.9721352019785655}, "da_ddt": {"precision": 0.656934306569343, "recall": 0.6040268456375839, "f1": 0.6293706293706294, "accuracy": 0.9730619574977551}, "en_ewt": {"precision": 0.588512241054614, "recall": 0.5744485294117647, "f1": 0.5813953488372093, "accuracy": 0.9593975375542894}, "pt_bosque": {"precision": 0.6541598694942904, "recall": 0.660082304526749, "f1": 0.6571077427283899, "accuracy": 0.9682292421388204}, "sr_set": {"precision": 0.813953488372093, "recall": 0.8264462809917356, "f1": 0.8201523140011716, "accuracy": 0.9721565537168374}, "sk_snk": {"precision": 0.4169054441260745, "recall": 0.3180327868852459, "f1": 0.36081835089894604, "accuracy": 0.9188913316582915}, "sv_talbanken": {"precision": 0.6684782608695652, "recall": 0.6275510204081632, "f1": 0.6473684210526315, "accuracy": 0.9940128576336065}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e48d14cc631628ec585a482f331c36ca4ce4b6c9e6438d8fb295eef317605490
3
+ size 942800188
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1e8a44ffae40011a1f460b1e33409046e5ce2173f25cea81d9f48f968448744
3
+ size 5304