File size: 11,344 Bytes
c6fdd64
1178d59
c6fdd64
 
 
 
 
 
 
1178d59
 
c6fdd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
base_model: FacebookAI/xlm-roberta-base
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-scr-ner-full-xlmr_data-univner_full44

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3854
- Precision: 0.5785
- Recall: 0.5835
- F1: 0.5810
- Accuracy: 0.9605

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.338         | 0.2910  | 500   | 0.2757          | 0.375     | 0.1450 | 0.2091 | 0.9304   |
| 0.2636        | 0.5821  | 1000  | 0.2477          | 0.2864    | 0.2401 | 0.2612 | 0.9323   |
| 0.2294        | 0.8731  | 1500  | 0.2256          | 0.3407    | 0.2946 | 0.3160 | 0.9369   |
| 0.2017        | 1.1641  | 2000  | 0.2149          | 0.3468    | 0.3505 | 0.3486 | 0.9379   |
| 0.1872        | 1.4552  | 2500  | 0.2112          | 0.3721    | 0.3305 | 0.3501 | 0.9387   |
| 0.1753        | 1.7462  | 3000  | 0.2087          | 0.3904    | 0.3083 | 0.3445 | 0.9423   |
| 0.1623        | 2.0373  | 3500  | 0.1986          | 0.3818    | 0.3929 | 0.3873 | 0.9417   |
| 0.1324        | 2.3283  | 4000  | 0.1986          | 0.4314    | 0.4066 | 0.4186 | 0.9458   |
| 0.1307        | 2.6193  | 4500  | 0.1901          | 0.4309    | 0.4376 | 0.4342 | 0.9474   |
| 0.1199        | 2.9104  | 5000  | 0.1789          | 0.4454    | 0.4336 | 0.4394 | 0.9485   |
| 0.0995        | 3.2014  | 5500  | 0.1831          | 0.4761    | 0.4709 | 0.4735 | 0.9514   |
| 0.0895        | 3.4924  | 6000  | 0.1899          | 0.4646    | 0.5120 | 0.4872 | 0.9515   |
| 0.0827        | 3.7835  | 6500  | 0.1757          | 0.5053    | 0.5158 | 0.5105 | 0.9535   |
| 0.0761        | 4.0745  | 7000  | 0.2069          | 0.5092    | 0.4826 | 0.4956 | 0.9539   |
| 0.0616        | 4.3655  | 7500  | 0.1927          | 0.5246    | 0.5012 | 0.5127 | 0.9548   |
| 0.0609        | 4.6566  | 8000  | 0.1891          | 0.5251    | 0.4911 | 0.5076 | 0.9547   |
| 0.0577        | 4.9476  | 8500  | 0.1873          | 0.4978    | 0.5341 | 0.5153 | 0.9546   |
| 0.0451        | 5.2386  | 9000  | 0.2040          | 0.5239    | 0.5302 | 0.5270 | 0.9555   |
| 0.0419        | 5.5297  | 9500  | 0.2065          | 0.5249    | 0.5195 | 0.5222 | 0.9555   |
| 0.0433        | 5.8207  | 10000 | 0.2139          | 0.5171    | 0.5493 | 0.5327 | 0.9556   |
| 0.0392        | 6.1118  | 10500 | 0.2184          | 0.5140    | 0.5578 | 0.5350 | 0.9557   |
| 0.0308        | 6.4028  | 11000 | 0.2159          | 0.5110    | 0.5582 | 0.5335 | 0.9559   |
| 0.0312        | 6.6938  | 11500 | 0.2202          | 0.4900    | 0.5969 | 0.5382 | 0.9541   |
| 0.0296        | 6.9849  | 12000 | 0.2288          | 0.5260    | 0.5260 | 0.5260 | 0.9567   |
| 0.024         | 7.2759  | 12500 | 0.2368          | 0.5330    | 0.5667 | 0.5493 | 0.9572   |
| 0.0232        | 7.5669  | 13000 | 0.2438          | 0.5247    | 0.5399 | 0.5322 | 0.9565   |
| 0.0222        | 7.8580  | 13500 | 0.2483          | 0.5643    | 0.5266 | 0.5448 | 0.9573   |
| 0.0187        | 8.1490  | 14000 | 0.2476          | 0.5615    | 0.5333 | 0.5470 | 0.9567   |
| 0.0176        | 8.4400  | 14500 | 0.2473          | 0.5494    | 0.5445 | 0.5470 | 0.9571   |
| 0.0176        | 8.7311  | 15000 | 0.2452          | 0.5346    | 0.5715 | 0.5524 | 0.9570   |
| 0.0159        | 9.0221  | 15500 | 0.2794          | 0.5324    | 0.5569 | 0.5444 | 0.9577   |
| 0.0131        | 9.3132  | 16000 | 0.2672          | 0.5424    | 0.5917 | 0.5660 | 0.9582   |
| 0.0132        | 9.6042  | 16500 | 0.2716          | 0.5287    | 0.5566 | 0.5423 | 0.9572   |
| 0.0133        | 9.8952  | 17000 | 0.2668          | 0.5267    | 0.5669 | 0.5461 | 0.9569   |
| 0.0113        | 10.1863 | 17500 | 0.2779          | 0.5369    | 0.5770 | 0.5562 | 0.9578   |
| 0.0094        | 10.4773 | 18000 | 0.2717          | 0.5380    | 0.5881 | 0.5619 | 0.9578   |
| 0.0111        | 10.7683 | 18500 | 0.2861          | 0.5582    | 0.5465 | 0.5523 | 0.9587   |
| 0.0094        | 11.0594 | 19000 | 0.2803          | 0.5365    | 0.5833 | 0.5589 | 0.9582   |
| 0.008         | 11.3504 | 19500 | 0.2853          | 0.5262    | 0.5755 | 0.5498 | 0.9575   |
| 0.0077        | 11.6414 | 20000 | 0.2893          | 0.5366    | 0.5806 | 0.5577 | 0.9579   |
| 0.0083        | 11.9325 | 20500 | 0.2898          | 0.5415    | 0.5923 | 0.5657 | 0.9584   |
| 0.0067        | 12.2235 | 21000 | 0.3000          | 0.5635    | 0.5419 | 0.5525 | 0.9582   |
| 0.0066        | 12.5146 | 21500 | 0.3046          | 0.5574    | 0.5643 | 0.5608 | 0.9587   |
| 0.0065        | 12.8056 | 22000 | 0.3063          | 0.5495    | 0.5748 | 0.5619 | 0.9587   |
| 0.0062        | 13.0966 | 22500 | 0.3147          | 0.5619    | 0.5575 | 0.5597 | 0.9585   |
| 0.0056        | 13.3877 | 23000 | 0.3033          | 0.5440    | 0.5836 | 0.5631 | 0.9586   |
| 0.005         | 13.6787 | 23500 | 0.3083          | 0.5567    | 0.5741 | 0.5653 | 0.9585   |
| 0.0051        | 13.9697 | 24000 | 0.3201          | 0.5510    | 0.5891 | 0.5694 | 0.9592   |
| 0.0041        | 14.2608 | 24500 | 0.3265          | 0.5445    | 0.5687 | 0.5563 | 0.9586   |
| 0.0043        | 14.5518 | 25000 | 0.3202          | 0.5634    | 0.5641 | 0.5638 | 0.9586   |
| 0.0045        | 14.8428 | 25500 | 0.3200          | 0.5704    | 0.5677 | 0.5691 | 0.9597   |
| 0.0042        | 15.1339 | 26000 | 0.3285          | 0.5651    | 0.5770 | 0.5710 | 0.9595   |
| 0.0035        | 15.4249 | 26500 | 0.3259          | 0.5575    | 0.5846 | 0.5707 | 0.9590   |
| 0.0038        | 15.7159 | 27000 | 0.3300          | 0.5711    | 0.5685 | 0.5698 | 0.9595   |
| 0.0034        | 16.0070 | 27500 | 0.3244          | 0.5552    | 0.5771 | 0.5660 | 0.9586   |
| 0.003         | 16.2980 | 28000 | 0.3310          | 0.5683    | 0.5778 | 0.5730 | 0.9596   |
| 0.0031        | 16.5891 | 28500 | 0.3295          | 0.5629    | 0.5800 | 0.5713 | 0.9595   |
| 0.0029        | 16.8801 | 29000 | 0.3302          | 0.5396    | 0.5992 | 0.5679 | 0.9584   |
| 0.0028        | 17.1711 | 29500 | 0.3350          | 0.5519    | 0.5826 | 0.5668 | 0.9592   |
| 0.0029        | 17.4622 | 30000 | 0.3269          | 0.5360    | 0.6158 | 0.5732 | 0.9580   |
| 0.0023        | 17.7532 | 30500 | 0.3400          | 0.5731    | 0.5801 | 0.5766 | 0.9598   |
| 0.0022        | 18.0442 | 31000 | 0.3345          | 0.5716    | 0.5649 | 0.5682 | 0.9593   |
| 0.0022        | 18.3353 | 31500 | 0.3301          | 0.5589    | 0.5966 | 0.5771 | 0.9594   |
| 0.002         | 18.6263 | 32000 | 0.3406          | 0.5702    | 0.5774 | 0.5738 | 0.9596   |
| 0.0025        | 18.9173 | 32500 | 0.3422          | 0.5943    | 0.5380 | 0.5647 | 0.9595   |
| 0.0019        | 19.2084 | 33000 | 0.3476          | 0.5783    | 0.5728 | 0.5755 | 0.9600   |
| 0.0019        | 19.4994 | 33500 | 0.3449          | 0.5620    | 0.5910 | 0.5761 | 0.9596   |
| 0.0016        | 19.7905 | 34000 | 0.3518          | 0.5634    | 0.5926 | 0.5776 | 0.9595   |
| 0.0014        | 20.0815 | 34500 | 0.3522          | 0.5633    | 0.5820 | 0.5725 | 0.9598   |
| 0.0014        | 20.3725 | 35000 | 0.3486          | 0.5744    | 0.5739 | 0.5742 | 0.9598   |
| 0.0014        | 20.6636 | 35500 | 0.3513          | 0.5762    | 0.5737 | 0.5749 | 0.9596   |
| 0.0013        | 20.9546 | 36000 | 0.3608          | 0.5406    | 0.5851 | 0.5619 | 0.9586   |
| 0.0015        | 21.2456 | 36500 | 0.3548          | 0.5814    | 0.5696 | 0.5754 | 0.9602   |
| 0.0011        | 21.5367 | 37000 | 0.3552          | 0.5829    | 0.5700 | 0.5764 | 0.9600   |
| 0.0013        | 21.8277 | 37500 | 0.3565          | 0.5623    | 0.5797 | 0.5709 | 0.9593   |
| 0.0014        | 22.1187 | 38000 | 0.3608          | 0.5791    | 0.5693 | 0.5742 | 0.9603   |
| 0.001         | 22.4098 | 38500 | 0.3534          | 0.5706    | 0.5914 | 0.5808 | 0.9601   |
| 0.001         | 22.7008 | 39000 | 0.3639          | 0.5887    | 0.5719 | 0.5802 | 0.9603   |
| 0.0009        | 22.9919 | 39500 | 0.3650          | 0.5679    | 0.5898 | 0.5787 | 0.9597   |
| 0.0008        | 23.2829 | 40000 | 0.3676          | 0.5815    | 0.5744 | 0.5779 | 0.9602   |
| 0.0007        | 23.5739 | 40500 | 0.3738          | 0.5944    | 0.5680 | 0.5809 | 0.9606   |
| 0.001         | 23.8650 | 41000 | 0.3700          | 0.5804    | 0.5735 | 0.5769 | 0.9597   |
| 0.0009        | 24.1560 | 41500 | 0.3706          | 0.5774    | 0.5768 | 0.5771 | 0.9601   |
| 0.0008        | 24.4470 | 42000 | 0.3696          | 0.5838    | 0.5731 | 0.5784 | 0.9604   |
| 0.0007        | 24.7381 | 42500 | 0.3737          | 0.5656    | 0.5862 | 0.5757 | 0.9598   |
| 0.0007        | 25.0291 | 43000 | 0.3756          | 0.5617    | 0.5871 | 0.5741 | 0.9594   |
| 0.0006        | 25.3201 | 43500 | 0.3757          | 0.5668    | 0.5885 | 0.5774 | 0.9593   |
| 0.0004        | 25.6112 | 44000 | 0.3783          | 0.5865    | 0.5708 | 0.5785 | 0.9602   |
| 0.0006        | 25.9022 | 44500 | 0.3688          | 0.5724    | 0.5902 | 0.5812 | 0.9600   |
| 0.0004        | 26.1932 | 45000 | 0.3783          | 0.5851    | 0.5787 | 0.5819 | 0.9605   |
| 0.0004        | 26.4843 | 45500 | 0.3809          | 0.5773    | 0.5780 | 0.5776 | 0.9601   |
| 0.0004        | 26.7753 | 46000 | 0.3816          | 0.5823    | 0.5803 | 0.5813 | 0.9605   |
| 0.0004        | 27.0664 | 46500 | 0.3887          | 0.5762    | 0.5820 | 0.5791 | 0.9601   |
| 0.0003        | 27.3574 | 47000 | 0.3833          | 0.5834    | 0.5869 | 0.5852 | 0.9605   |
| 0.0004        | 27.6484 | 47500 | 0.3867          | 0.5791    | 0.5891 | 0.5840 | 0.9605   |
| 0.0004        | 27.9395 | 48000 | 0.3876          | 0.5814    | 0.5856 | 0.5835 | 0.9605   |
| 0.0003        | 28.2305 | 48500 | 0.3918          | 0.5810    | 0.5742 | 0.5776 | 0.9605   |
| 0.0003        | 28.5215 | 49000 | 0.3869          | 0.5804    | 0.5826 | 0.5815 | 0.9606   |
| 0.0003        | 28.8126 | 49500 | 0.3864          | 0.5760    | 0.5871 | 0.5815 | 0.9604   |
| 0.0004        | 29.1036 | 50000 | 0.3840          | 0.5732    | 0.5887 | 0.5808 | 0.9604   |
| 0.0003        | 29.3946 | 50500 | 0.3864          | 0.5833    | 0.5784 | 0.5808 | 0.9606   |
| 0.0002        | 29.6857 | 51000 | 0.3852          | 0.5781    | 0.5842 | 0.5811 | 0.9604   |
| 0.0002        | 29.9767 | 51500 | 0.3854          | 0.5785    | 0.5835 | 0.5810 | 0.9605   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1