haryoaw commited on
Commit
a4afbdc
1 Parent(s): 1d33a31

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +111 -111
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: FacebookAI/xlm-roberta-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full44
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3776
25
- - Precision: 0.5772
26
- - Recall: 0.5825
27
- - F1: 0.5798
28
- - Accuracy: 0.9599
29
 
30
  ## Model description
31
 
@@ -56,109 +56,109 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.3385 | 0.2910 | 500 | 0.2744 | 0.3836 | 0.1602 | 0.2260 | 0.9307 |
60
- | 0.263 | 0.5821 | 1000 | 0.2426 | 0.3482 | 0.2183 | 0.2684 | 0.9345 |
61
- | 0.2298 | 0.8731 | 1500 | 0.2294 | 0.3484 | 0.2568 | 0.2957 | 0.9368 |
62
- | 0.2038 | 1.1641 | 2000 | 0.2142 | 0.3736 | 0.3177 | 0.3434 | 0.9394 |
63
- | 0.1888 | 1.4552 | 2500 | 0.2092 | 0.3685 | 0.3516 | 0.3598 | 0.9391 |
64
- | 0.1766 | 1.7462 | 3000 | 0.2089 | 0.3931 | 0.3264 | 0.3566 | 0.9421 |
65
- | 0.1656 | 2.0373 | 3500 | 0.2080 | 0.3569 | 0.3994 | 0.3769 | 0.9385 |
66
- | 0.1369 | 2.3283 | 4000 | 0.2057 | 0.4197 | 0.3884 | 0.4034 | 0.9445 |
67
- | 0.1366 | 2.6193 | 4500 | 0.1910 | 0.4154 | 0.4353 | 0.4251 | 0.9453 |
68
- | 0.1251 | 2.9104 | 5000 | 0.1826 | 0.4619 | 0.4395 | 0.4504 | 0.9489 |
69
- | 0.1032 | 3.2014 | 5500 | 0.1804 | 0.4848 | 0.4898 | 0.4873 | 0.9509 |
70
- | 0.0922 | 3.4924 | 6000 | 0.1830 | 0.4673 | 0.4985 | 0.4824 | 0.9505 |
71
- | 0.0853 | 3.7835 | 6500 | 0.1806 | 0.4728 | 0.5073 | 0.4895 | 0.9513 |
72
- | 0.077 | 4.0745 | 7000 | 0.2022 | 0.4684 | 0.4952 | 0.4814 | 0.9529 |
73
- | 0.0615 | 4.3655 | 7500 | 0.1946 | 0.4931 | 0.5243 | 0.5083 | 0.9541 |
74
- | 0.0604 | 4.6566 | 8000 | 0.1929 | 0.5011 | 0.5263 | 0.5134 | 0.9551 |
75
- | 0.0572 | 4.9476 | 8500 | 0.1924 | 0.5080 | 0.5167 | 0.5123 | 0.9552 |
76
- | 0.0441 | 5.2386 | 9000 | 0.2090 | 0.4977 | 0.5415 | 0.5187 | 0.9538 |
77
- | 0.042 | 5.5297 | 9500 | 0.2099 | 0.5146 | 0.5380 | 0.5260 | 0.9557 |
78
- | 0.042 | 5.8207 | 10000 | 0.2047 | 0.5107 | 0.5317 | 0.5210 | 0.9545 |
79
- | 0.0377 | 6.1118 | 10500 | 0.2251 | 0.5136 | 0.5604 | 0.5360 | 0.9558 |
80
- | 0.0297 | 6.4028 | 11000 | 0.2206 | 0.5164 | 0.5522 | 0.5337 | 0.9555 |
81
- | 0.0309 | 6.6938 | 11500 | 0.2278 | 0.4961 | 0.5598 | 0.5260 | 0.9547 |
82
- | 0.0289 | 6.9849 | 12000 | 0.2304 | 0.5247 | 0.5569 | 0.5403 | 0.9569 |
83
- | 0.0226 | 7.2759 | 12500 | 0.2467 | 0.5274 | 0.5585 | 0.5425 | 0.9567 |
84
- | 0.0231 | 7.5669 | 13000 | 0.2447 | 0.5321 | 0.5409 | 0.5365 | 0.9568 |
85
- | 0.0213 | 7.8580 | 13500 | 0.2425 | 0.5429 | 0.5462 | 0.5446 | 0.9572 |
86
- | 0.0185 | 8.1490 | 14000 | 0.2477 | 0.5368 | 0.5592 | 0.5478 | 0.9574 |
87
- | 0.0162 | 8.4400 | 14500 | 0.2563 | 0.5344 | 0.5537 | 0.5439 | 0.9575 |
88
- | 0.017 | 8.7311 | 15000 | 0.2440 | 0.5260 | 0.5725 | 0.5483 | 0.9563 |
89
- | 0.0165 | 9.0221 | 15500 | 0.2565 | 0.5283 | 0.5757 | 0.5510 | 0.9571 |
90
- | 0.0128 | 9.3132 | 16000 | 0.2651 | 0.5292 | 0.5864 | 0.5563 | 0.9576 |
91
- | 0.0133 | 9.6042 | 16500 | 0.2643 | 0.5521 | 0.5416 | 0.5468 | 0.9581 |
92
- | 0.0127 | 9.8952 | 17000 | 0.2673 | 0.5419 | 0.5669 | 0.5541 | 0.9576 |
93
- | 0.0106 | 10.1863 | 17500 | 0.2859 | 0.5520 | 0.5402 | 0.5461 | 0.9583 |
94
- | 0.0089 | 10.4773 | 18000 | 0.2723 | 0.5725 | 0.5510 | 0.5615 | 0.9586 |
95
- | 0.0108 | 10.7683 | 18500 | 0.2939 | 0.5643 | 0.5461 | 0.5551 | 0.9584 |
96
- | 0.0089 | 11.0594 | 19000 | 0.2870 | 0.5532 | 0.5630 | 0.5580 | 0.9584 |
97
- | 0.008 | 11.3504 | 19500 | 0.2964 | 0.5311 | 0.5758 | 0.5526 | 0.9571 |
98
- | 0.0079 | 11.6414 | 20000 | 0.2893 | 0.5410 | 0.5752 | 0.5576 | 0.9579 |
99
- | 0.0083 | 11.9325 | 20500 | 0.2984 | 0.5670 | 0.5595 | 0.5632 | 0.9588 |
100
- | 0.0068 | 12.2235 | 21000 | 0.2982 | 0.5464 | 0.5672 | 0.5566 | 0.9582 |
101
- | 0.0062 | 12.5146 | 21500 | 0.2995 | 0.5612 | 0.5640 | 0.5626 | 0.9589 |
102
- | 0.0065 | 12.8056 | 22000 | 0.2989 | 0.5457 | 0.5734 | 0.5592 | 0.9585 |
103
- | 0.006 | 13.0966 | 22500 | 0.3070 | 0.5548 | 0.5699 | 0.5622 | 0.9588 |
104
- | 0.0051 | 13.3877 | 23000 | 0.3191 | 0.5603 | 0.5582 | 0.5593 | 0.9585 |
105
- | 0.005 | 13.6787 | 23500 | 0.3142 | 0.5527 | 0.5715 | 0.5619 | 0.9585 |
106
- | 0.0053 | 13.9697 | 24000 | 0.3134 | 0.5695 | 0.5586 | 0.5640 | 0.9587 |
107
- | 0.0041 | 14.2608 | 24500 | 0.3200 | 0.5448 | 0.5875 | 0.5654 | 0.9588 |
108
- | 0.0042 | 14.5518 | 25000 | 0.3264 | 0.5507 | 0.5700 | 0.5602 | 0.9587 |
109
- | 0.0043 | 14.8428 | 25500 | 0.3214 | 0.5449 | 0.5768 | 0.5604 | 0.9584 |
110
- | 0.004 | 15.1339 | 26000 | 0.3269 | 0.5496 | 0.5621 | 0.5558 | 0.9580 |
111
- | 0.0035 | 15.4249 | 26500 | 0.3184 | 0.5419 | 0.5856 | 0.5629 | 0.9583 |
112
- | 0.0033 | 15.7159 | 27000 | 0.3355 | 0.5623 | 0.5568 | 0.5595 | 0.9582 |
113
- | 0.0032 | 16.0070 | 27500 | 0.3314 | 0.5475 | 0.5745 | 0.5607 | 0.9589 |
114
- | 0.0028 | 16.2980 | 28000 | 0.3346 | 0.5618 | 0.5569 | 0.5593 | 0.9585 |
115
- | 0.0027 | 16.5891 | 28500 | 0.3360 | 0.5625 | 0.5794 | 0.5709 | 0.9591 |
116
- | 0.003 | 16.8801 | 29000 | 0.3374 | 0.5688 | 0.5689 | 0.5689 | 0.9592 |
117
- | 0.0025 | 17.1711 | 29500 | 0.3431 | 0.5564 | 0.5813 | 0.5686 | 0.9588 |
118
- | 0.0024 | 17.4622 | 30000 | 0.3397 | 0.5463 | 0.5874 | 0.5661 | 0.9585 |
119
- | 0.0028 | 17.7532 | 30500 | 0.3392 | 0.5528 | 0.5813 | 0.5667 | 0.9587 |
120
- | 0.0025 | 18.0442 | 31000 | 0.3329 | 0.5688 | 0.5737 | 0.5712 | 0.9593 |
121
- | 0.0019 | 18.3353 | 31500 | 0.3413 | 0.5580 | 0.5846 | 0.5710 | 0.9585 |
122
- | 0.0024 | 18.6263 | 32000 | 0.3388 | 0.5540 | 0.5914 | 0.5721 | 0.9587 |
123
- | 0.0021 | 18.9173 | 32500 | 0.3332 | 0.5553 | 0.5804 | 0.5676 | 0.9585 |
124
- | 0.0017 | 19.2084 | 33000 | 0.3478 | 0.5710 | 0.5660 | 0.5685 | 0.9590 |
125
- | 0.0019 | 19.4994 | 33500 | 0.3585 | 0.5685 | 0.5595 | 0.5640 | 0.9590 |
126
- | 0.0017 | 19.7905 | 34000 | 0.3499 | 0.5518 | 0.5777 | 0.5645 | 0.9587 |
127
- | 0.0014 | 20.0815 | 34500 | 0.3424 | 0.5627 | 0.5820 | 0.5722 | 0.9591 |
128
- | 0.0014 | 20.3725 | 35000 | 0.3597 | 0.5577 | 0.5666 | 0.5621 | 0.9586 |
129
- | 0.0016 | 20.6636 | 35500 | 0.3635 | 0.5719 | 0.5542 | 0.5629 | 0.9587 |
130
- | 0.0013 | 20.9546 | 36000 | 0.3522 | 0.5663 | 0.5780 | 0.5721 | 0.9595 |
131
- | 0.0016 | 21.2456 | 36500 | 0.3496 | 0.5737 | 0.5734 | 0.5735 | 0.9597 |
132
- | 0.0012 | 21.5367 | 37000 | 0.3518 | 0.5627 | 0.5846 | 0.5735 | 0.9594 |
133
- | 0.0012 | 21.8277 | 37500 | 0.3635 | 0.5739 | 0.5705 | 0.5722 | 0.9592 |
134
- | 0.0012 | 22.1187 | 38000 | 0.3603 | 0.5881 | 0.5644 | 0.5760 | 0.9596 |
135
- | 0.0009 | 22.4098 | 38500 | 0.3655 | 0.5786 | 0.5640 | 0.5712 | 0.9597 |
136
- | 0.001 | 22.7008 | 39000 | 0.3635 | 0.5635 | 0.5944 | 0.5786 | 0.9591 |
137
- | 0.0008 | 22.9919 | 39500 | 0.3718 | 0.5640 | 0.5794 | 0.5716 | 0.9590 |
138
- | 0.0007 | 23.2829 | 40000 | 0.3655 | 0.5788 | 0.5744 | 0.5766 | 0.9596 |
139
- | 0.0008 | 23.5739 | 40500 | 0.3664 | 0.5708 | 0.5791 | 0.5749 | 0.9594 |
140
- | 0.001 | 23.8650 | 41000 | 0.3582 | 0.5773 | 0.5711 | 0.5742 | 0.9594 |
141
- | 0.0006 | 24.1560 | 41500 | 0.3632 | 0.5804 | 0.5840 | 0.5822 | 0.9598 |
142
- | 0.0007 | 24.4470 | 42000 | 0.3722 | 0.5662 | 0.5825 | 0.5742 | 0.9594 |
143
- | 0.0007 | 24.7381 | 42500 | 0.3703 | 0.5782 | 0.5820 | 0.5801 | 0.9596 |
144
- | 0.0006 | 25.0291 | 43000 | 0.3702 | 0.5887 | 0.5806 | 0.5846 | 0.9603 |
145
- | 0.0006 | 25.3201 | 43500 | 0.3805 | 0.5874 | 0.5566 | 0.5716 | 0.9598 |
146
- | 0.0005 | 25.6112 | 44000 | 0.3726 | 0.5792 | 0.5738 | 0.5765 | 0.9598 |
147
- | 0.0005 | 25.9022 | 44500 | 0.3773 | 0.5706 | 0.5787 | 0.5746 | 0.9597 |
148
- | 0.0004 | 26.1932 | 45000 | 0.3712 | 0.5633 | 0.5898 | 0.5763 | 0.9594 |
149
- | 0.0005 | 26.4843 | 45500 | 0.3728 | 0.5688 | 0.5920 | 0.5802 | 0.9598 |
150
- | 0.0004 | 26.7753 | 46000 | 0.3800 | 0.5787 | 0.5705 | 0.5745 | 0.9601 |
151
- | 0.0006 | 27.0664 | 46500 | 0.3719 | 0.5801 | 0.5817 | 0.5809 | 0.9599 |
152
- | 0.0004 | 27.3574 | 47000 | 0.3747 | 0.5633 | 0.5930 | 0.5778 | 0.9595 |
153
- | 0.0004 | 27.6484 | 47500 | 0.3795 | 0.5778 | 0.5804 | 0.5791 | 0.9598 |
154
- | 0.0005 | 27.9395 | 48000 | 0.3798 | 0.5724 | 0.5744 | 0.5734 | 0.9595 |
155
- | 0.0003 | 28.2305 | 48500 | 0.3811 | 0.5712 | 0.5810 | 0.5761 | 0.9598 |
156
- | 0.0004 | 28.5215 | 49000 | 0.3794 | 0.5798 | 0.5735 | 0.5766 | 0.9598 |
157
- | 0.0004 | 28.8126 | 49500 | 0.3765 | 0.5778 | 0.5865 | 0.5821 | 0.9599 |
158
- | 0.0003 | 29.1036 | 50000 | 0.3786 | 0.5808 | 0.5764 | 0.5786 | 0.9599 |
159
- | 0.0003 | 29.3946 | 50500 | 0.3780 | 0.5783 | 0.5822 | 0.5802 | 0.9599 |
160
- | 0.0002 | 29.6857 | 51000 | 0.3778 | 0.5795 | 0.5814 | 0.5805 | 0.9600 |
161
- | 0.0003 | 29.9767 | 51500 | 0.3776 | 0.5772 | 0.5825 | 0.5798 | 0.9599 |
162
 
163
 
164
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full44
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3770
25
+ - Precision: 0.5737
26
+ - Recall: 0.5773
27
+ - F1: 0.5755
28
+ - Accuracy: 0.9597
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3376 | 0.2910 | 500 | 0.2801 | 0.4349 | 0.1412 | 0.2132 | 0.9307 |
60
+ | 0.2635 | 0.5821 | 1000 | 0.2441 | 0.3323 | 0.2249 | 0.2683 | 0.9343 |
61
+ | 0.2296 | 0.8731 | 1500 | 0.2240 | 0.3293 | 0.2759 | 0.3002 | 0.9364 |
62
+ | 0.2009 | 1.1641 | 2000 | 0.2151 | 0.3590 | 0.3569 | 0.3580 | 0.9372 |
63
+ | 0.1874 | 1.4552 | 2500 | 0.2115 | 0.3755 | 0.3354 | 0.3543 | 0.9398 |
64
+ | 0.1754 | 1.7462 | 3000 | 0.2126 | 0.3774 | 0.3173 | 0.3448 | 0.9420 |
65
+ | 0.1643 | 2.0373 | 3500 | 0.2050 | 0.3776 | 0.3711 | 0.3743 | 0.9412 |
66
+ | 0.1368 | 2.3283 | 4000 | 0.2107 | 0.4135 | 0.3636 | 0.3869 | 0.9435 |
67
+ | 0.1361 | 2.6193 | 4500 | 0.1976 | 0.4033 | 0.4125 | 0.4078 | 0.9449 |
68
+ | 0.1255 | 2.9104 | 5000 | 0.1890 | 0.4470 | 0.4359 | 0.4413 | 0.9470 |
69
+ | 0.105 | 3.2014 | 5500 | 0.1942 | 0.4691 | 0.4675 | 0.4683 | 0.9494 |
70
+ | 0.0946 | 3.4924 | 6000 | 0.1912 | 0.4519 | 0.4515 | 0.4517 | 0.9491 |
71
+ | 0.0875 | 3.7835 | 6500 | 0.1861 | 0.4874 | 0.4696 | 0.4784 | 0.9516 |
72
+ | 0.079 | 4.0745 | 7000 | 0.1950 | 0.4950 | 0.5017 | 0.4983 | 0.9535 |
73
+ | 0.0641 | 4.3655 | 7500 | 0.1965 | 0.5102 | 0.5058 | 0.5080 | 0.9545 |
74
+ | 0.0627 | 4.6566 | 8000 | 0.1870 | 0.4881 | 0.5327 | 0.5094 | 0.9535 |
75
+ | 0.06 | 4.9476 | 8500 | 0.1986 | 0.5151 | 0.5056 | 0.5103 | 0.9550 |
76
+ | 0.0467 | 5.2386 | 9000 | 0.2012 | 0.5317 | 0.5217 | 0.5267 | 0.9552 |
77
+ | 0.0443 | 5.5297 | 9500 | 0.2116 | 0.5339 | 0.5125 | 0.5230 | 0.9552 |
78
+ | 0.0446 | 5.8207 | 10000 | 0.2037 | 0.5268 | 0.5232 | 0.5250 | 0.9556 |
79
+ | 0.0401 | 6.1118 | 10500 | 0.2191 | 0.5186 | 0.5510 | 0.5343 | 0.9563 |
80
+ | 0.0313 | 6.4028 | 11000 | 0.2224 | 0.5503 | 0.5269 | 0.5384 | 0.9569 |
81
+ | 0.0318 | 6.6938 | 11500 | 0.2233 | 0.5035 | 0.5485 | 0.5251 | 0.9546 |
82
+ | 0.0299 | 6.9849 | 12000 | 0.2302 | 0.5646 | 0.5056 | 0.5335 | 0.9566 |
83
+ | 0.0237 | 7.2759 | 12500 | 0.2427 | 0.5342 | 0.5403 | 0.5372 | 0.9564 |
84
+ | 0.0235 | 7.5669 | 13000 | 0.2487 | 0.5049 | 0.5425 | 0.5230 | 0.9557 |
85
+ | 0.0226 | 7.8580 | 13500 | 0.2501 | 0.5431 | 0.5325 | 0.5378 | 0.9569 |
86
+ | 0.0193 | 8.1490 | 14000 | 0.2425 | 0.5252 | 0.5604 | 0.5422 | 0.9567 |
87
+ | 0.0169 | 8.4400 | 14500 | 0.2520 | 0.5446 | 0.5423 | 0.5435 | 0.9568 |
88
+ | 0.0174 | 8.7311 | 15000 | 0.2516 | 0.5351 | 0.5725 | 0.5532 | 0.9570 |
89
+ | 0.0167 | 9.0221 | 15500 | 0.2772 | 0.5618 | 0.5335 | 0.5473 | 0.9581 |
90
+ | 0.0128 | 9.3132 | 16000 | 0.2577 | 0.5349 | 0.5754 | 0.5544 | 0.9575 |
91
+ | 0.013 | 9.6042 | 16500 | 0.2834 | 0.5483 | 0.5392 | 0.5437 | 0.9579 |
92
+ | 0.0129 | 9.8952 | 17000 | 0.2734 | 0.5573 | 0.5659 | 0.5615 | 0.9583 |
93
+ | 0.0108 | 10.1863 | 17500 | 0.2819 | 0.5346 | 0.5804 | 0.5566 | 0.9575 |
94
+ | 0.0096 | 10.4773 | 18000 | 0.3010 | 0.5129 | 0.5861 | 0.5471 | 0.9558 |
95
+ | 0.011 | 10.7683 | 18500 | 0.2832 | 0.5315 | 0.5859 | 0.5574 | 0.9576 |
96
+ | 0.009 | 11.0594 | 19000 | 0.3044 | 0.5479 | 0.5636 | 0.5556 | 0.9581 |
97
+ | 0.008 | 11.3504 | 19500 | 0.2994 | 0.5418 | 0.5800 | 0.5602 | 0.9578 |
98
+ | 0.0082 | 11.6414 | 20000 | 0.2879 | 0.5529 | 0.5640 | 0.5584 | 0.9579 |
99
+ | 0.0086 | 11.9325 | 20500 | 0.3122 | 0.5410 | 0.5467 | 0.5438 | 0.9578 |
100
+ | 0.0067 | 12.2235 | 21000 | 0.3093 | 0.5531 | 0.5676 | 0.5603 | 0.9586 |
101
+ | 0.0067 | 12.5146 | 21500 | 0.3113 | 0.5446 | 0.5644 | 0.5543 | 0.9580 |
102
+ | 0.0063 | 12.8056 | 22000 | 0.3014 | 0.5501 | 0.5813 | 0.5653 | 0.9580 |
103
+ | 0.0061 | 13.0966 | 22500 | 0.3200 | 0.5451 | 0.5610 | 0.5529 | 0.9582 |
104
+ | 0.0052 | 13.3877 | 23000 | 0.3071 | 0.5495 | 0.5659 | 0.5576 | 0.9582 |
105
+ | 0.0052 | 13.6787 | 23500 | 0.3079 | 0.5647 | 0.5640 | 0.5644 | 0.9586 |
106
+ | 0.0052 | 13.9697 | 24000 | 0.3142 | 0.5406 | 0.5750 | 0.5572 | 0.9583 |
107
+ | 0.004 | 14.2608 | 24500 | 0.3146 | 0.5610 | 0.5719 | 0.5664 | 0.9588 |
108
+ | 0.0039 | 14.5518 | 25000 | 0.3268 | 0.5504 | 0.5712 | 0.5606 | 0.9587 |
109
+ | 0.0045 | 14.8428 | 25500 | 0.3133 | 0.5569 | 0.5713 | 0.5640 | 0.9588 |
110
+ | 0.0043 | 15.1339 | 26000 | 0.3308 | 0.5599 | 0.5575 | 0.5587 | 0.9587 |
111
+ | 0.0031 | 15.4249 | 26500 | 0.3380 | 0.5493 | 0.5638 | 0.5565 | 0.9580 |
112
+ | 0.0035 | 15.7159 | 27000 | 0.3410 | 0.5559 | 0.5462 | 0.5510 | 0.9579 |
113
+ | 0.0033 | 16.0070 | 27500 | 0.3326 | 0.5550 | 0.5709 | 0.5628 | 0.9585 |
114
+ | 0.0028 | 16.2980 | 28000 | 0.3400 | 0.5580 | 0.5751 | 0.5664 | 0.9590 |
115
+ | 0.003 | 16.5891 | 28500 | 0.3418 | 0.5601 | 0.5624 | 0.5612 | 0.9586 |
116
+ | 0.003 | 16.8801 | 29000 | 0.3340 | 0.5394 | 0.5874 | 0.5624 | 0.9577 |
117
+ | 0.0029 | 17.1711 | 29500 | 0.3431 | 0.5511 | 0.5915 | 0.5706 | 0.9589 |
118
+ | 0.0025 | 17.4622 | 30000 | 0.3326 | 0.5545 | 0.5832 | 0.5685 | 0.9583 |
119
+ | 0.0023 | 17.7532 | 30500 | 0.3492 | 0.5364 | 0.5892 | 0.5616 | 0.9581 |
120
+ | 0.0025 | 18.0442 | 31000 | 0.3481 | 0.5655 | 0.5695 | 0.5675 | 0.9586 |
121
+ | 0.002 | 18.3353 | 31500 | 0.3450 | 0.5542 | 0.5768 | 0.5653 | 0.9585 |
122
+ | 0.0023 | 18.6263 | 32000 | 0.3443 | 0.5611 | 0.5700 | 0.5655 | 0.9589 |
123
+ | 0.0021 | 18.9173 | 32500 | 0.3484 | 0.5567 | 0.5871 | 0.5715 | 0.9588 |
124
+ | 0.002 | 19.2084 | 33000 | 0.3528 | 0.5675 | 0.5611 | 0.5643 | 0.9584 |
125
+ | 0.0018 | 19.4994 | 33500 | 0.3496 | 0.5511 | 0.5765 | 0.5635 | 0.9583 |
126
+ | 0.0019 | 19.7905 | 34000 | 0.3608 | 0.5666 | 0.5692 | 0.5679 | 0.9586 |
127
+ | 0.0015 | 20.0815 | 34500 | 0.3517 | 0.5674 | 0.5819 | 0.5745 | 0.9591 |
128
+ | 0.0015 | 20.3725 | 35000 | 0.3551 | 0.5603 | 0.5764 | 0.5682 | 0.9585 |
129
+ | 0.0015 | 20.6636 | 35500 | 0.3604 | 0.5724 | 0.5563 | 0.5642 | 0.9592 |
130
+ | 0.0015 | 20.9546 | 36000 | 0.3649 | 0.5709 | 0.5742 | 0.5726 | 0.9594 |
131
+ | 0.0013 | 21.2456 | 36500 | 0.3597 | 0.5482 | 0.5924 | 0.5694 | 0.9590 |
132
+ | 0.0012 | 21.5367 | 37000 | 0.3557 | 0.5710 | 0.5715 | 0.5712 | 0.9594 |
133
+ | 0.0013 | 21.8277 | 37500 | 0.3591 | 0.5774 | 0.5605 | 0.5688 | 0.9597 |
134
+ | 0.0013 | 22.1187 | 38000 | 0.3563 | 0.5679 | 0.5813 | 0.5745 | 0.9594 |
135
+ | 0.0007 | 22.4098 | 38500 | 0.3520 | 0.5590 | 0.5838 | 0.5711 | 0.9589 |
136
+ | 0.001 | 22.7008 | 39000 | 0.3606 | 0.5703 | 0.5711 | 0.5707 | 0.9593 |
137
+ | 0.001 | 22.9919 | 39500 | 0.3600 | 0.5618 | 0.5920 | 0.5765 | 0.9593 |
138
+ | 0.001 | 23.2829 | 40000 | 0.3595 | 0.5635 | 0.5709 | 0.5672 | 0.9586 |
139
+ | 0.0008 | 23.5739 | 40500 | 0.3658 | 0.5735 | 0.5689 | 0.5712 | 0.9592 |
140
+ | 0.001 | 23.8650 | 41000 | 0.3589 | 0.5677 | 0.5793 | 0.5734 | 0.9594 |
141
+ | 0.0007 | 24.1560 | 41500 | 0.3704 | 0.5819 | 0.5708 | 0.5763 | 0.9600 |
142
+ | 0.0008 | 24.4470 | 42000 | 0.3656 | 0.5779 | 0.5702 | 0.5740 | 0.9595 |
143
+ | 0.0007 | 24.7381 | 42500 | 0.3683 | 0.5647 | 0.5791 | 0.5718 | 0.9594 |
144
+ | 0.0008 | 25.0291 | 43000 | 0.3781 | 0.5766 | 0.5638 | 0.5701 | 0.9596 |
145
+ | 0.0007 | 25.3201 | 43500 | 0.3782 | 0.5738 | 0.5602 | 0.5669 | 0.9593 |
146
+ | 0.0006 | 25.6112 | 44000 | 0.3658 | 0.5736 | 0.5750 | 0.5743 | 0.9593 |
147
+ | 0.0006 | 25.9022 | 44500 | 0.3688 | 0.5788 | 0.5610 | 0.5698 | 0.9595 |
148
+ | 0.0005 | 26.1932 | 45000 | 0.3696 | 0.5769 | 0.5842 | 0.5805 | 0.9599 |
149
+ | 0.0004 | 26.4843 | 45500 | 0.3710 | 0.5781 | 0.5797 | 0.5789 | 0.9599 |
150
+ | 0.0004 | 26.7753 | 46000 | 0.3742 | 0.5772 | 0.5670 | 0.5721 | 0.9595 |
151
+ | 0.0006 | 27.0664 | 46500 | 0.3725 | 0.5672 | 0.5869 | 0.5769 | 0.9595 |
152
+ | 0.0003 | 27.3574 | 47000 | 0.3750 | 0.5613 | 0.5874 | 0.5740 | 0.9595 |
153
+ | 0.0004 | 27.6484 | 47500 | 0.3728 | 0.5633 | 0.5887 | 0.5757 | 0.9596 |
154
+ | 0.0005 | 27.9395 | 48000 | 0.3728 | 0.5645 | 0.5793 | 0.5718 | 0.9596 |
155
+ | 0.0003 | 28.2305 | 48500 | 0.3766 | 0.5719 | 0.5793 | 0.5756 | 0.9598 |
156
+ | 0.0003 | 28.5215 | 49000 | 0.3821 | 0.5697 | 0.5793 | 0.5744 | 0.9598 |
157
+ | 0.0004 | 28.8126 | 49500 | 0.3774 | 0.5726 | 0.5735 | 0.5731 | 0.9596 |
158
+ | 0.0004 | 29.1036 | 50000 | 0.3798 | 0.5779 | 0.5734 | 0.5756 | 0.9598 |
159
+ | 0.0004 | 29.3946 | 50500 | 0.3764 | 0.5721 | 0.5786 | 0.5753 | 0.9596 |
160
+ | 0.0003 | 29.6857 | 51000 | 0.3763 | 0.5731 | 0.5800 | 0.5766 | 0.9597 |
161
+ | 0.0002 | 29.9767 | 51500 | 0.3770 | 0.5737 | 0.5773 | 0.5755 | 0.9597 |
162
 
163
 
164
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.3150684931506849, "recall": 0.46938775510204084, "f1": 0.3770491803278688, "accuracy": 0.9451737451737452}, "en_pud": {"precision": 0.5114942528735632, "recall": 0.413953488372093, "f1": 0.4575835475578406, "accuracy": 0.9482905175670571}, "de_pud": {"precision": 0.11875693673695893, "recall": 0.3089509143407122, "f1": 0.17156600748262962, "accuracy": 0.8277155313862453}, "pt_pud": {"precision": 0.5457875457875457, "recall": 0.5423111919927207, "f1": 0.5440438156093108, "accuracy": 0.9604391848592302}, "ru_pud": {"precision": 0.017978190391983496, "recall": 0.05888030888030888, "f1": 0.027545721381801763, "accuracy": 0.7005424954792043}, "sv_pud": {"precision": 0.5099540581929556, "recall": 0.3236151603498542, "f1": 0.3959571938168846, "accuracy": 0.9449570140490668}, "tl_trg": {"precision": 0.35555555555555557, "recall": 0.6956521739130435, "f1": 0.47058823529411764, "accuracy": 0.9564032697547684}, "tl_ugnayan": {"precision": 0.013333333333333334, "recall": 0.030303030303030304, "f1": 0.01851851851851852, "accuracy": 0.9015496809480401}, "zh_gsd": {"precision": 0.472400513478819, "recall": 0.47979139504563234, "f1": 0.4760672703751617, "accuracy": 0.9309024309024309}, "zh_gsdsimp": {"precision": 0.5026881720430108, "recall": 0.49017038007863695, "f1": 0.4963503649635036, "accuracy": 0.9347319347319347}, "hr_set": {"precision": 0.7171929824561404, "recall": 0.7284390591589451, "f1": 0.7227722772277229, "accuracy": 0.9692910140148392}, "da_ddt": {"precision": 0.6104218362282878, "recall": 0.5503355704697986, "f1": 0.5788235294117646, "accuracy": 0.9704679237753168}, "en_ewt": {"precision": 0.5663811563169164, "recall": 0.48621323529411764, "f1": 0.5232443125618199, "accuracy": 0.956927122763677}, "pt_bosque": {"precision": 0.5913113435237329, "recall": 0.6049382716049383, "f1": 0.5980471928397071, "accuracy": 0.9647877119258078}, "sr_set": {"precision": 0.7739234449760766, "recall": 0.7638724911452184, "f1": 0.7688651218062983, "accuracy": 0.9678662113650294}, "sk_snk": {"precision": 0.391705069124424, "recall": 0.2786885245901639, "f1": 0.32567049808429116, "accuracy": 0.9172424623115578}, "sv_talbanken": {"precision": 0.6514285714285715, "recall": 0.5816326530612245, "f1": 0.6145552560646901, "accuracy": 0.9936693330716003}}
 
1
+ {"ceb_gja": {"precision": 0.32, "recall": 0.6530612244897959, "f1": 0.42953020134228187, "accuracy": 0.9343629343629344}, "en_pud": {"precision": 0.4531914893617021, "recall": 0.39627906976744187, "f1": 0.4228287841191067, "accuracy": 0.9472043823196071}, "de_pud": {"precision": 0.11494688922610015, "recall": 0.29162656400384984, "f1": 0.16489795918367348, "accuracy": 0.8384979607144531}, "pt_pud": {"precision": 0.538961038961039, "recall": 0.5286624203821656, "f1": 0.5337620578778135, "accuracy": 0.9591575169820994}, "ru_pud": {"precision": 0.015295815295815297, "recall": 0.05115830115830116, "f1": 0.023550322150633192, "accuracy": 0.6840092999225006}, "sv_pud": {"precision": 0.4992526158445441, "recall": 0.32458697764820216, "f1": 0.3934040047114252, "accuracy": 0.9457957643111764}, "tl_trg": {"precision": 0.22448979591836735, "recall": 0.4782608695652174, "f1": 0.3055555555555556, "accuracy": 0.9400544959128065}, "tl_ugnayan": {"precision": 0.06172839506172839, "recall": 0.15151515151515152, "f1": 0.08771929824561403, "accuracy": 0.8960802187784868}, "zh_gsd": {"precision": 0.45828144458281445, "recall": 0.47979139504563234, "f1": 0.46878980891719746, "accuracy": 0.9306526806526807}, "zh_gsdsimp": {"precision": 0.4910941475826972, "recall": 0.5058977719528178, "f1": 0.4983860555196902, "accuracy": 0.9314019314019314}, "hr_set": {"precision": 0.7253371185237757, "recall": 0.7284390591589451, "f1": 0.7268847795163584, "accuracy": 0.9685902720527617}, "da_ddt": {"precision": 0.6297229219143576, "recall": 0.5592841163310962, "f1": 0.5924170616113743, "accuracy": 0.9701686121919585}, "en_ewt": {"precision": 0.569055036344756, "recall": 0.5036764705882353, "f1": 0.5343734763529986, "accuracy": 0.956927122763677}, "pt_bosque": {"precision": 0.5757085020242915, "recall": 0.5851851851851851, "f1": 0.5804081632653061, "accuracy": 0.963048833502391}, "sr_set": {"precision": 0.7763466042154566, "recall": 0.7827626918536009, "f1": 0.7795414462081128, "accuracy": 0.9688293494440067}, "sk_snk": {"precision": 0.39939485627836613, "recall": 0.28852459016393445, "f1": 0.3350253807106599, "accuracy": 0.9159076633165829}, "sv_talbanken": {"precision": 0.672514619883041, "recall": 0.5867346938775511, "f1": 0.6267029972752044, "accuracy": 0.9936693330716003}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d6b10ede1430e12f872e1fb14d44500b7c9ae36871dfd12ed35fbbd64ec6ed2
3
  size 939737140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1908aa29a9e764da623cd0bb045d6f4a5fde2725e103cb029ed4ebcefe4ed6a1
3
  size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8d9066f59d77e78d537d521382db182829650a9bd09563096faef17a6c821c9
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a200c39ad919b8c06db9ecd09e865c59c941095af4a96ada9443bce42689fd0
3
  size 5304