haryoaw commited on
Commit
215288e
1 Parent(s): e04e08e

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +111 -99
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: FacebookAI/xlm-roberta-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full55
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3589
25
- - Precision: 0.5560
26
- - Recall: 0.5908
27
- - F1: 0.5729
28
- - Accuracy: 0.9593
29
 
30
  ## Model description
31
 
@@ -56,97 +56,109 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.3346 | 0.2910 | 500 | 0.2808 | 0.4102 | 0.1434 | 0.2125 | 0.9305 |
60
- | 0.26 | 0.5821 | 1000 | 0.2551 | 0.3762 | 0.1883 | 0.2510 | 0.9340 |
61
- | 0.2311 | 0.8731 | 1500 | 0.2299 | 0.3410 | 0.3261 | 0.3334 | 0.9349 |
62
- | 0.2056 | 1.1641 | 2000 | 0.2266 | 0.3817 | 0.2606 | 0.3097 | 0.9394 |
63
- | 0.1831 | 1.4552 | 2500 | 0.2044 | 0.3621 | 0.3610 | 0.3616 | 0.9400 |
64
- | 0.1746 | 1.7462 | 3000 | 0.1989 | 0.3778 | 0.3799 | 0.3788 | 0.9412 |
65
- | 0.1591 | 2.0373 | 3500 | 0.2074 | 0.4064 | 0.3487 | 0.3753 | 0.9427 |
66
- | 0.1358 | 2.3283 | 4000 | 0.1933 | 0.3815 | 0.4080 | 0.3943 | 0.9425 |
67
- | 0.1236 | 2.6193 | 4500 | 0.1910 | 0.4125 | 0.4408 | 0.4262 | 0.9437 |
68
- | 0.1156 | 2.9104 | 5000 | 0.1773 | 0.4416 | 0.4848 | 0.4622 | 0.9501 |
69
- | 0.0974 | 3.2014 | 5500 | 0.1792 | 0.4864 | 0.4916 | 0.4889 | 0.9517 |
70
- | 0.0839 | 3.4924 | 6000 | 0.1799 | 0.4842 | 0.5109 | 0.4972 | 0.9523 |
71
- | 0.0831 | 3.7835 | 6500 | 0.1722 | 0.5017 | 0.4986 | 0.5002 | 0.9537 |
72
- | 0.0712 | 4.0745 | 7000 | 0.1867 | 0.4858 | 0.5118 | 0.4985 | 0.9525 |
73
- | 0.0572 | 4.3655 | 7500 | 0.1965 | 0.4738 | 0.5423 | 0.5058 | 0.9532 |
74
- | 0.0573 | 4.6566 | 8000 | 0.1789 | 0.5204 | 0.5370 | 0.5286 | 0.9551 |
75
- | 0.055 | 4.9476 | 8500 | 0.1809 | 0.5055 | 0.5709 | 0.5362 | 0.9553 |
76
- | 0.0419 | 5.2386 | 9000 | 0.1947 | 0.5300 | 0.5536 | 0.5415 | 0.9564 |
77
- | 0.0378 | 5.5297 | 9500 | 0.2089 | 0.5056 | 0.5623 | 0.5324 | 0.9556 |
78
- | 0.0399 | 5.8207 | 10000 | 0.2107 | 0.5578 | 0.5395 | 0.5485 | 0.9575 |
79
- | 0.0365 | 6.1118 | 10500 | 0.2190 | 0.5147 | 0.5647 | 0.5385 | 0.9562 |
80
- | 0.0288 | 6.4028 | 11000 | 0.2240 | 0.5495 | 0.5432 | 0.5463 | 0.9576 |
81
- | 0.0289 | 6.6938 | 11500 | 0.2344 | 0.5428 | 0.5403 | 0.5416 | 0.9575 |
82
- | 0.0286 | 6.9849 | 12000 | 0.2225 | 0.5517 | 0.5471 | 0.5494 | 0.9568 |
83
- | 0.0206 | 7.2759 | 12500 | 0.2338 | 0.5191 | 0.5552 | 0.5365 | 0.9565 |
84
- | 0.0218 | 7.5669 | 13000 | 0.2443 | 0.5418 | 0.5425 | 0.5421 | 0.9580 |
85
- | 0.0216 | 7.8580 | 13500 | 0.2347 | 0.5369 | 0.5751 | 0.5553 | 0.9579 |
86
- | 0.0185 | 8.1490 | 14000 | 0.2483 | 0.5282 | 0.5790 | 0.5525 | 0.9571 |
87
- | 0.0167 | 8.4400 | 14500 | 0.2496 | 0.5585 | 0.5543 | 0.5564 | 0.9583 |
88
- | 0.0162 | 8.7311 | 15000 | 0.2474 | 0.5324 | 0.5820 | 0.5561 | 0.9572 |
89
- | 0.0144 | 9.0221 | 15500 | 0.2639 | 0.5505 | 0.5385 | 0.5444 | 0.9575 |
90
- | 0.0122 | 9.3132 | 16000 | 0.2491 | 0.5486 | 0.5679 | 0.5581 | 0.9578 |
91
- | 0.0125 | 9.6042 | 16500 | 0.2554 | 0.5398 | 0.5816 | 0.5599 | 0.9581 |
92
- | 0.0125 | 9.8952 | 17000 | 0.2636 | 0.5332 | 0.5878 | 0.5592 | 0.9579 |
93
- | 0.0102 | 10.1863 | 17500 | 0.2649 | 0.5456 | 0.5819 | 0.5632 | 0.9585 |
94
- | 0.0095 | 10.4773 | 18000 | 0.2807 | 0.5526 | 0.5604 | 0.5565 | 0.9581 |
95
- | 0.0101 | 10.7683 | 18500 | 0.2672 | 0.5553 | 0.5849 | 0.5697 | 0.9588 |
96
- | 0.0101 | 11.0594 | 19000 | 0.2773 | 0.5466 | 0.5813 | 0.5634 | 0.9584 |
97
- | 0.0072 | 11.3504 | 19500 | 0.2839 | 0.5420 | 0.5884 | 0.5642 | 0.9584 |
98
- | 0.0075 | 11.6414 | 20000 | 0.2996 | 0.5521 | 0.5533 | 0.5527 | 0.9584 |
99
- | 0.0079 | 11.9325 | 20500 | 0.2905 | 0.5430 | 0.5744 | 0.5582 | 0.9582 |
100
- | 0.0071 | 12.2235 | 21000 | 0.2968 | 0.5568 | 0.5651 | 0.5609 | 0.9583 |
101
- | 0.0058 | 12.5146 | 21500 | 0.3024 | 0.5356 | 0.5930 | 0.5628 | 0.9583 |
102
- | 0.0065 | 12.8056 | 22000 | 0.2981 | 0.5548 | 0.5713 | 0.5629 | 0.9586 |
103
- | 0.0063 | 13.0966 | 22500 | 0.2996 | 0.5687 | 0.5664 | 0.5675 | 0.9589 |
104
- | 0.0052 | 13.3877 | 23000 | 0.2914 | 0.5549 | 0.5825 | 0.5684 | 0.9585 |
105
- | 0.0045 | 13.6787 | 23500 | 0.2983 | 0.5524 | 0.5943 | 0.5726 | 0.9584 |
106
- | 0.0054 | 13.9697 | 24000 | 0.3003 | 0.5630 | 0.5646 | 0.5638 | 0.9581 |
107
- | 0.004 | 14.2608 | 24500 | 0.3071 | 0.5641 | 0.5692 | 0.5666 | 0.9590 |
108
- | 0.0042 | 14.5518 | 25000 | 0.3170 | 0.5607 | 0.5731 | 0.5668 | 0.9590 |
109
- | 0.0043 | 14.8428 | 25500 | 0.3131 | 0.5365 | 0.5918 | 0.5628 | 0.9580 |
110
- | 0.0038 | 15.1339 | 26000 | 0.3228 | 0.5440 | 0.5897 | 0.5659 | 0.9586 |
111
- | 0.0031 | 15.4249 | 26500 | 0.3263 | 0.5622 | 0.5676 | 0.5649 | 0.9593 |
112
- | 0.0035 | 15.7159 | 27000 | 0.3211 | 0.5307 | 0.5972 | 0.5620 | 0.9573 |
113
- | 0.0036 | 16.0070 | 27500 | 0.3196 | 0.5750 | 0.5680 | 0.5715 | 0.9592 |
114
- | 0.0028 | 16.2980 | 28000 | 0.3307 | 0.5642 | 0.5864 | 0.5751 | 0.9591 |
115
- | 0.0032 | 16.5891 | 28500 | 0.3273 | 0.5749 | 0.5670 | 0.5709 | 0.9593 |
116
- | 0.0029 | 16.8801 | 29000 | 0.3408 | 0.5851 | 0.5444 | 0.5640 | 0.9589 |
117
- | 0.0031 | 17.1711 | 29500 | 0.3281 | 0.5756 | 0.5601 | 0.5678 | 0.9589 |
118
- | 0.0022 | 17.4622 | 30000 | 0.3352 | 0.5538 | 0.5810 | 0.5671 | 0.9586 |
119
- | 0.0023 | 17.7532 | 30500 | 0.3295 | 0.5622 | 0.5924 | 0.5769 | 0.9590 |
120
- | 0.0028 | 18.0442 | 31000 | 0.3344 | 0.5841 | 0.5549 | 0.5691 | 0.9593 |
121
- | 0.0021 | 18.3353 | 31500 | 0.3397 | 0.5628 | 0.5809 | 0.5717 | 0.9595 |
122
- | 0.0021 | 18.6263 | 32000 | 0.3493 | 0.5725 | 0.5602 | 0.5663 | 0.9591 |
123
- | 0.002 | 18.9173 | 32500 | 0.3378 | 0.5638 | 0.5737 | 0.5687 | 0.9589 |
124
- | 0.0019 | 19.2084 | 33000 | 0.3365 | 0.5789 | 0.5666 | 0.5727 | 0.9597 |
125
- | 0.0015 | 19.4994 | 33500 | 0.3512 | 0.5584 | 0.5741 | 0.5661 | 0.9592 |
126
- | 0.0019 | 19.7905 | 34000 | 0.3474 | 0.5693 | 0.5793 | 0.5742 | 0.9594 |
127
- | 0.0017 | 20.0815 | 34500 | 0.3350 | 0.5583 | 0.5985 | 0.5777 | 0.9592 |
128
- | 0.0015 | 20.3725 | 35000 | 0.3423 | 0.5754 | 0.5827 | 0.5791 | 0.9601 |
129
- | 0.0015 | 20.6636 | 35500 | 0.3499 | 0.5905 | 0.5812 | 0.5858 | 0.9605 |
130
- | 0.0012 | 20.9546 | 36000 | 0.3381 | 0.5662 | 0.5956 | 0.5805 | 0.9590 |
131
- | 0.0012 | 21.2456 | 36500 | 0.3581 | 0.5611 | 0.5920 | 0.5761 | 0.9594 |
132
- | 0.0012 | 21.5367 | 37000 | 0.3602 | 0.5608 | 0.5786 | 0.5695 | 0.9592 |
133
- | 0.0012 | 21.8277 | 37500 | 0.3538 | 0.5701 | 0.5800 | 0.5750 | 0.9595 |
134
- | 0.0012 | 22.1187 | 38000 | 0.3593 | 0.5755 | 0.5829 | 0.5792 | 0.9599 |
135
- | 0.001 | 22.4098 | 38500 | 0.3537 | 0.5552 | 0.5927 | 0.5733 | 0.9587 |
136
- | 0.0012 | 22.7008 | 39000 | 0.3607 | 0.5593 | 0.5842 | 0.5715 | 0.9592 |
137
- | 0.0011 | 22.9919 | 39500 | 0.3737 | 0.5629 | 0.5807 | 0.5717 | 0.9598 |
138
- | 0.001 | 23.2829 | 40000 | 0.3578 | 0.5732 | 0.5788 | 0.5760 | 0.9594 |
139
- | 0.0009 | 23.5739 | 40500 | 0.3654 | 0.5739 | 0.5734 | 0.5737 | 0.9593 |
140
- | 0.0011 | 23.8650 | 41000 | 0.3622 | 0.5760 | 0.5719 | 0.5740 | 0.9593 |
141
- | 0.0007 | 24.1560 | 41500 | 0.3595 | 0.5877 | 0.5830 | 0.5854 | 0.9602 |
142
- | 0.0008 | 24.4470 | 42000 | 0.3657 | 0.5814 | 0.5708 | 0.5760 | 0.9598 |
143
- | 0.0008 | 24.7381 | 42500 | 0.3709 | 0.5912 | 0.5607 | 0.5755 | 0.9598 |
144
- | 0.0007 | 25.0291 | 43000 | 0.3535 | 0.5723 | 0.5881 | 0.5801 | 0.9596 |
145
- | 0.0007 | 25.3201 | 43500 | 0.3645 | 0.5854 | 0.5761 | 0.5807 | 0.9602 |
146
- | 0.0005 | 25.6112 | 44000 | 0.3649 | 0.5696 | 0.5897 | 0.5795 | 0.9595 |
147
- | 0.0006 | 25.9022 | 44500 | 0.3583 | 0.5635 | 0.5995 | 0.5809 | 0.9596 |
148
- | 0.0006 | 26.1932 | 45000 | 0.3685 | 0.5651 | 0.5790 | 0.5719 | 0.9589 |
149
- | 0.0005 | 26.4843 | 45500 | 0.3589 | 0.5560 | 0.5908 | 0.5729 | 0.9593 |
 
 
 
 
 
 
 
 
 
 
 
 
150
 
151
 
152
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full55
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3759
25
+ - Precision: 0.5780
26
+ - Recall: 0.5852
27
+ - F1: 0.5816
28
+ - Accuracy: 0.9601
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3355 | 0.2910 | 500 | 0.2828 | 0.3844 | 0.1433 | 0.2087 | 0.9298 |
60
+ | 0.2605 | 0.5821 | 1000 | 0.2558 | 0.3871 | 0.1868 | 0.2520 | 0.9344 |
61
+ | 0.2311 | 0.8731 | 1500 | 0.2241 | 0.3571 | 0.2806 | 0.3143 | 0.9378 |
62
+ | 0.2056 | 1.1641 | 2000 | 0.2276 | 0.3605 | 0.2643 | 0.3050 | 0.9393 |
63
+ | 0.1852 | 1.4552 | 2500 | 0.2054 | 0.3487 | 0.3444 | 0.3465 | 0.9387 |
64
+ | 0.1757 | 1.7462 | 3000 | 0.1992 | 0.3871 | 0.3546 | 0.3702 | 0.9420 |
65
+ | 0.1625 | 2.0373 | 3500 | 0.2113 | 0.4095 | 0.3499 | 0.3773 | 0.9433 |
66
+ | 0.1434 | 2.3283 | 4000 | 0.1937 | 0.4170 | 0.3934 | 0.4049 | 0.9443 |
67
+ | 0.1315 | 2.6193 | 4500 | 0.1924 | 0.4105 | 0.4115 | 0.4110 | 0.9450 |
68
+ | 0.1241 | 2.9104 | 5000 | 0.1836 | 0.4421 | 0.4601 | 0.4509 | 0.9486 |
69
+ | 0.104 | 3.2014 | 5500 | 0.1876 | 0.4825 | 0.4428 | 0.4618 | 0.9504 |
70
+ | 0.0915 | 3.4924 | 6000 | 0.1854 | 0.4810 | 0.4807 | 0.4809 | 0.9517 |
71
+ | 0.0897 | 3.7835 | 6500 | 0.1792 | 0.4946 | 0.4728 | 0.4834 | 0.9527 |
72
+ | 0.0775 | 4.0745 | 7000 | 0.1919 | 0.4944 | 0.5053 | 0.4998 | 0.9532 |
73
+ | 0.0633 | 4.3655 | 7500 | 0.2008 | 0.4805 | 0.4996 | 0.4899 | 0.9531 |
74
+ | 0.0631 | 4.6566 | 8000 | 0.1886 | 0.5087 | 0.4620 | 0.4842 | 0.9532 |
75
+ | 0.0604 | 4.9476 | 8500 | 0.1795 | 0.5262 | 0.5372 | 0.5316 | 0.9562 |
76
+ | 0.0471 | 5.2386 | 9000 | 0.1945 | 0.5189 | 0.5359 | 0.5273 | 0.9554 |
77
+ | 0.042 | 5.5297 | 9500 | 0.2005 | 0.5047 | 0.5656 | 0.5334 | 0.9553 |
78
+ | 0.0434 | 5.8207 | 10000 | 0.2155 | 0.5327 | 0.5162 | 0.5243 | 0.9568 |
79
+ | 0.04 | 6.1118 | 10500 | 0.2309 | 0.4978 | 0.5470 | 0.5212 | 0.9552 |
80
+ | 0.0327 | 6.4028 | 11000 | 0.2202 | 0.5152 | 0.5675 | 0.5401 | 0.9562 |
81
+ | 0.0312 | 6.6938 | 11500 | 0.2149 | 0.4986 | 0.5849 | 0.5383 | 0.9548 |
82
+ | 0.0307 | 6.9849 | 12000 | 0.2269 | 0.5241 | 0.5321 | 0.5281 | 0.9568 |
83
+ | 0.022 | 7.2759 | 12500 | 0.2424 | 0.5394 | 0.5247 | 0.5320 | 0.9562 |
84
+ | 0.0236 | 7.5669 | 13000 | 0.2423 | 0.5469 | 0.5444 | 0.5456 | 0.9580 |
85
+ | 0.0226 | 7.8580 | 13500 | 0.2340 | 0.5453 | 0.5555 | 0.5504 | 0.9578 |
86
+ | 0.0202 | 8.1490 | 14000 | 0.2501 | 0.5650 | 0.5291 | 0.5465 | 0.9581 |
87
+ | 0.0174 | 8.4400 | 14500 | 0.2597 | 0.5297 | 0.5572 | 0.5431 | 0.9576 |
88
+ | 0.0174 | 8.7311 | 15000 | 0.2535 | 0.5508 | 0.5507 | 0.5508 | 0.9579 |
89
+ | 0.0164 | 9.0221 | 15500 | 0.2607 | 0.5234 | 0.5768 | 0.5488 | 0.9569 |
90
+ | 0.0129 | 9.3132 | 16000 | 0.2679 | 0.5232 | 0.5669 | 0.5441 | 0.9563 |
91
+ | 0.0133 | 9.6042 | 16500 | 0.2643 | 0.5308 | 0.5712 | 0.5502 | 0.9571 |
92
+ | 0.0135 | 9.8952 | 17000 | 0.2712 | 0.5409 | 0.5721 | 0.5561 | 0.9578 |
93
+ | 0.0116 | 10.1863 | 17500 | 0.2710 | 0.5568 | 0.5448 | 0.5507 | 0.9582 |
94
+ | 0.0099 | 10.4773 | 18000 | 0.2728 | 0.5304 | 0.5726 | 0.5507 | 0.9573 |
95
+ | 0.0106 | 10.7683 | 18500 | 0.2941 | 0.5576 | 0.5438 | 0.5506 | 0.9583 |
96
+ | 0.0113 | 11.0594 | 19000 | 0.2930 | 0.5597 | 0.5569 | 0.5583 | 0.9585 |
97
+ | 0.0077 | 11.3504 | 19500 | 0.2816 | 0.5526 | 0.5719 | 0.5621 | 0.9586 |
98
+ | 0.0086 | 11.6414 | 20000 | 0.2954 | 0.5673 | 0.5447 | 0.5558 | 0.9585 |
99
+ | 0.0089 | 11.9325 | 20500 | 0.2833 | 0.5848 | 0.5423 | 0.5628 | 0.9593 |
100
+ | 0.0077 | 12.2235 | 21000 | 0.2880 | 0.5434 | 0.5826 | 0.5623 | 0.9581 |
101
+ | 0.0059 | 12.5146 | 21500 | 0.3104 | 0.5639 | 0.5409 | 0.5522 | 0.9584 |
102
+ | 0.0073 | 12.8056 | 22000 | 0.2894 | 0.5675 | 0.5578 | 0.5626 | 0.9591 |
103
+ | 0.0059 | 13.0966 | 22500 | 0.3091 | 0.5471 | 0.5786 | 0.5624 | 0.9581 |
104
+ | 0.0056 | 13.3877 | 23000 | 0.3030 | 0.5525 | 0.5724 | 0.5623 | 0.9577 |
105
+ | 0.006 | 13.6787 | 23500 | 0.2938 | 0.5554 | 0.5767 | 0.5659 | 0.9575 |
106
+ | 0.0052 | 13.9697 | 24000 | 0.3198 | 0.5519 | 0.5780 | 0.5647 | 0.9587 |
107
+ | 0.0048 | 14.2608 | 24500 | 0.3026 | 0.5562 | 0.5826 | 0.5691 | 0.9589 |
108
+ | 0.0046 | 14.5518 | 25000 | 0.3129 | 0.5488 | 0.5788 | 0.5634 | 0.9588 |
109
+ | 0.0043 | 14.8428 | 25500 | 0.3114 | 0.5622 | 0.5689 | 0.5655 | 0.9590 |
110
+ | 0.0037 | 15.1339 | 26000 | 0.3201 | 0.5652 | 0.5739 | 0.5695 | 0.9591 |
111
+ | 0.0038 | 15.4249 | 26500 | 0.3291 | 0.5575 | 0.5685 | 0.5629 | 0.9590 |
112
+ | 0.004 | 15.7159 | 27000 | 0.3273 | 0.5615 | 0.5754 | 0.5684 | 0.9592 |
113
+ | 0.004 | 16.0070 | 27500 | 0.3250 | 0.5847 | 0.5291 | 0.5555 | 0.9584 |
114
+ | 0.0031 | 16.2980 | 28000 | 0.3263 | 0.5560 | 0.5783 | 0.5669 | 0.9584 |
115
+ | 0.0029 | 16.5891 | 28500 | 0.3374 | 0.5577 | 0.5799 | 0.5685 | 0.9591 |
116
+ | 0.0031 | 16.8801 | 29000 | 0.3300 | 0.5492 | 0.5858 | 0.5669 | 0.9586 |
117
+ | 0.0032 | 17.1711 | 29500 | 0.3334 | 0.5554 | 0.5804 | 0.5676 | 0.9588 |
118
+ | 0.0022 | 17.4622 | 30000 | 0.3447 | 0.5689 | 0.5780 | 0.5734 | 0.9594 |
119
+ | 0.0026 | 17.7532 | 30500 | 0.3441 | 0.5632 | 0.5607 | 0.5619 | 0.9591 |
120
+ | 0.0029 | 18.0442 | 31000 | 0.3405 | 0.5559 | 0.5894 | 0.5722 | 0.9591 |
121
+ | 0.002 | 18.3353 | 31500 | 0.3388 | 0.5406 | 0.5872 | 0.5629 | 0.9579 |
122
+ | 0.0025 | 18.6263 | 32000 | 0.3423 | 0.5415 | 0.5963 | 0.5676 | 0.9582 |
123
+ | 0.0024 | 18.9173 | 32500 | 0.3430 | 0.5574 | 0.5545 | 0.5559 | 0.9585 |
124
+ | 0.0019 | 19.2084 | 33000 | 0.3432 | 0.5440 | 0.5881 | 0.5652 | 0.9581 |
125
+ | 0.0019 | 19.4994 | 33500 | 0.3476 | 0.5577 | 0.5839 | 0.5705 | 0.9592 |
126
+ | 0.0019 | 19.7905 | 34000 | 0.3479 | 0.5583 | 0.5853 | 0.5715 | 0.9595 |
127
+ | 0.0019 | 20.0815 | 34500 | 0.3628 | 0.5721 | 0.5644 | 0.5682 | 0.9598 |
128
+ | 0.0016 | 20.3725 | 35000 | 0.3552 | 0.5896 | 0.5537 | 0.5711 | 0.9595 |
129
+ | 0.0016 | 20.6636 | 35500 | 0.3632 | 0.5498 | 0.5679 | 0.5587 | 0.9586 |
130
+ | 0.0017 | 20.9546 | 36000 | 0.3484 | 0.5727 | 0.5682 | 0.5704 | 0.9592 |
131
+ | 0.0016 | 21.2456 | 36500 | 0.3647 | 0.5698 | 0.5784 | 0.5741 | 0.9597 |
132
+ | 0.0012 | 21.5367 | 37000 | 0.3680 | 0.5697 | 0.5663 | 0.5680 | 0.9597 |
133
+ | 0.0012 | 21.8277 | 37500 | 0.3599 | 0.5823 | 0.5702 | 0.5762 | 0.9593 |
134
+ | 0.0013 | 22.1187 | 38000 | 0.3634 | 0.5771 | 0.5735 | 0.5753 | 0.9596 |
135
+ | 0.0011 | 22.4098 | 38500 | 0.3678 | 0.5831 | 0.5563 | 0.5694 | 0.9594 |
136
+ | 0.0011 | 22.7008 | 39000 | 0.3684 | 0.5666 | 0.5640 | 0.5653 | 0.9594 |
137
+ | 0.0012 | 22.9919 | 39500 | 0.3588 | 0.5696 | 0.5848 | 0.5771 | 0.9595 |
138
+ | 0.0009 | 23.2829 | 40000 | 0.3711 | 0.5794 | 0.5654 | 0.5723 | 0.9595 |
139
+ | 0.001 | 23.5739 | 40500 | 0.3736 | 0.5585 | 0.5810 | 0.5695 | 0.9592 |
140
+ | 0.001 | 23.8650 | 41000 | 0.3715 | 0.5729 | 0.5728 | 0.5728 | 0.9595 |
141
+ | 0.001 | 24.1560 | 41500 | 0.3625 | 0.5689 | 0.5768 | 0.5728 | 0.9594 |
142
+ | 0.0007 | 24.4470 | 42000 | 0.3724 | 0.5704 | 0.5758 | 0.5731 | 0.9598 |
143
+ | 0.0008 | 24.7381 | 42500 | 0.3690 | 0.5798 | 0.5608 | 0.5702 | 0.9598 |
144
+ | 0.0007 | 25.0291 | 43000 | 0.3744 | 0.5831 | 0.5653 | 0.5741 | 0.9599 |
145
+ | 0.0006 | 25.3201 | 43500 | 0.3704 | 0.5782 | 0.5721 | 0.5751 | 0.9598 |
146
+ | 0.0005 | 25.6112 | 44000 | 0.3757 | 0.5770 | 0.5695 | 0.5732 | 0.9599 |
147
+ | 0.0007 | 25.9022 | 44500 | 0.3650 | 0.5709 | 0.5806 | 0.5757 | 0.9595 |
148
+ | 0.0005 | 26.1932 | 45000 | 0.3749 | 0.5728 | 0.5731 | 0.5730 | 0.9599 |
149
+ | 0.0005 | 26.4843 | 45500 | 0.3741 | 0.5819 | 0.5682 | 0.5750 | 0.9601 |
150
+ | 0.0006 | 26.7753 | 46000 | 0.3795 | 0.5832 | 0.5680 | 0.5755 | 0.9601 |
151
+ | 0.0005 | 27.0664 | 46500 | 0.3718 | 0.5742 | 0.5820 | 0.5781 | 0.9601 |
152
+ | 0.0005 | 27.3574 | 47000 | 0.3745 | 0.5771 | 0.5810 | 0.5790 | 0.9600 |
153
+ | 0.0004 | 27.6484 | 47500 | 0.3839 | 0.5795 | 0.5578 | 0.5684 | 0.9596 |
154
+ | 0.0006 | 27.9395 | 48000 | 0.3732 | 0.5760 | 0.5879 | 0.5819 | 0.9601 |
155
+ | 0.0004 | 28.2305 | 48500 | 0.3752 | 0.5774 | 0.5853 | 0.5814 | 0.9600 |
156
+ | 0.0004 | 28.5215 | 49000 | 0.3761 | 0.5727 | 0.5872 | 0.5799 | 0.9599 |
157
+ | 0.0004 | 28.8126 | 49500 | 0.3765 | 0.5739 | 0.5832 | 0.5785 | 0.9599 |
158
+ | 0.0003 | 29.1036 | 50000 | 0.3764 | 0.5784 | 0.5823 | 0.5803 | 0.9600 |
159
+ | 0.0002 | 29.3946 | 50500 | 0.3776 | 0.5812 | 0.5806 | 0.5809 | 0.9602 |
160
+ | 0.0003 | 29.6857 | 51000 | 0.3750 | 0.5742 | 0.5915 | 0.5828 | 0.9599 |
161
+ | 0.0003 | 29.9767 | 51500 | 0.3759 | 0.5780 | 0.5852 | 0.5816 | 0.9601 |
162
 
163
 
164
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.3258426966292135, "recall": 0.5918367346938775, "f1": 0.42028985507246375, "accuracy": 0.9343629343629344}, "en_pud": {"precision": 0.5125958378970427, "recall": 0.43534883720930234, "f1": 0.4708249496981891, "accuracy": 0.9494710993577635}, "de_pud": {"precision": 0.11627906976744186, "recall": 0.28873917228103946, "f1": 0.1657916551533573, "accuracy": 0.8294500961042615}, "pt_pud": {"precision": 0.5673693858845096, "recall": 0.5632393084622384, "f1": 0.565296803652968, "accuracy": 0.9613790746357928}, "ru_pud": {"precision": 0.021672875042329835, "recall": 0.06177606177606178, "f1": 0.032088242667335176, "accuracy": 0.734952208731594}, "sv_pud": {"precision": 0.5230547550432276, "recall": 0.35276967930029157, "f1": 0.42135809634358673, "accuracy": 0.9466345145732858}, "tl_trg": {"precision": 0.22413793103448276, "recall": 0.5652173913043478, "f1": 0.32098765432098764, "accuracy": 0.9196185286103542}, "tl_ugnayan": {"precision": 0.03225806451612903, "recall": 0.06060606060606061, "f1": 0.042105263157894736, "accuracy": 0.902461257976299}, "zh_gsd": {"precision": 0.5187096774193548, "recall": 0.5241199478487614, "f1": 0.5214007782101167, "accuracy": 0.9357309357309357}, "zh_gsdsimp": {"precision": 0.529639175257732, "recall": 0.5386631716906947, "f1": 0.53411306042885, "accuracy": 0.9373959373959374}, "hr_set": {"precision": 0.7410776766969909, "recall": 0.7548111190306486, "f1": 0.7478813559322033, "accuracy": 0.9707749381698269}, "da_ddt": {"precision": 0.6428571428571429, "recall": 0.5838926174496645, "f1": 0.6119577960140681, "accuracy": 0.9713658585253916}, "en_ewt": {"precision": 0.6178010471204188, "recall": 0.5422794117647058, "f1": 0.5775819872736171, "accuracy": 0.9607522811491414}, "pt_bosque": {"precision": 0.6127450980392157, "recall": 0.6172839506172839, "f1": 0.6150061500615005, "accuracy": 0.9658745109404434}, "sr_set": {"precision": 0.7938388625592417, "recall": 0.7910271546635183, "f1": 0.7924305144884684, "accuracy": 0.9702302775588828}, "sk_snk": {"precision": 0.43047337278106507, "recall": 0.3180327868852459, "f1": 0.3658076681332495, "accuracy": 0.9201476130653267}, "sv_talbanken": {"precision": 0.7283236994219653, "recall": 0.6428571428571429, "f1": 0.6829268292682927, "accuracy": 0.9943563821956127}}
 
1
+ {"ceb_gja": {"precision": 0.3258426966292135, "recall": 0.5918367346938775, "f1": 0.42028985507246375, "accuracy": 0.9374517374517375}, "en_pud": {"precision": 0.46381243628950053, "recall": 0.4232558139534884, "f1": 0.44260700389105057, "accuracy": 0.9476293917642614}, "de_pud": {"precision": 0.11134091692519821, "recall": 0.3108758421559192, "f1": 0.16395939086294417, "accuracy": 0.8230275186348507}, "pt_pud": {"precision": 0.5327433628318584, "recall": 0.5477707006369427, "f1": 0.5401525347689548, "accuracy": 0.9596701841329517}, "ru_pud": {"precision": 0.016121384542437174, "recall": 0.06563706563706563, "f1": 0.025885039969547007, "accuracy": 0.6260397830018083}, "sv_pud": {"precision": 0.5033921302578019, "recall": 0.36054421768707484, "f1": 0.42015855039637606, "accuracy": 0.9462151394422311}, "tl_trg": {"precision": 0.2909090909090909, "recall": 0.6956521739130435, "f1": 0.41025641025641024, "accuracy": 0.9373297002724795}, "tl_ugnayan": {"precision": 0.039603960396039604, "recall": 0.12121212121212122, "f1": 0.05970149253731343, "accuracy": 0.8696444849589791}, "zh_gsd": {"precision": 0.5056890012642224, "recall": 0.5215123859191656, "f1": 0.5134788189987163, "accuracy": 0.9345654345654346}, "zh_gsdsimp": {"precision": 0.48717948717948717, "recall": 0.4980340760157274, "f1": 0.49254698639014904, "accuracy": 0.9330669330669331}, "hr_set": {"precision": 0.7071330589849109, "recall": 0.7348538845331433, "f1": 0.7207270185249912, "accuracy": 0.9701154163231657}, "da_ddt": {"precision": 0.590047393364929, "recall": 0.5570469798657718, "f1": 0.5730724971231301, "accuracy": 0.9689713658585254}, "en_ewt": {"precision": 0.5788934426229508, "recall": 0.5193014705882353, "f1": 0.5474806201550387, "accuracy": 0.958560784157469}, "pt_bosque": {"precision": 0.5647149460708782, "recall": 0.6032921810699589, "f1": 0.583366494230004, "accuracy": 0.9634110998406028}, "sr_set": {"precision": 0.7679814385150812, "recall": 0.781582054309327, "f1": 0.7747220596840257, "accuracy": 0.9699676035373435}, "sk_snk": {"precision": 0.3611111111111111, "recall": 0.28415300546448086, "f1": 0.3180428134556575, "accuracy": 0.9156721105527639}, "sv_talbanken": {"precision": 0.6595744680851063, "recall": 0.6326530612244898, "f1": 0.6458333333333333, "accuracy": 0.9939147077587476}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a96cc43684ba0556f7b7ccb735b9dd50f8f63b43d1debd76d7d79ee33f2fdc0d
3
  size 939737140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a2d07c4cc2e3638b69757e623808e7a42a4ec929f1c0ee7ae52281f00a3561c
3
  size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:58c7a2bd584b78859606a242efbaf2fb7a369b81b511d20502a5772ab2c5d2c6
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eed5584cabc6c38d6c245f58b09461818e09ef8b9eea5271d8a0e83bd8f69be
3
  size 5304