Initial Commit
Browse files- README.md +111 -111
- eval_result_ner.json +1 -1
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
base_model: FacebookAI/xlm-roberta-base
|
3 |
library_name: transformers
|
4 |
license: mit
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
8 |
- f1
|
9 |
- accuracy
|
10 |
-
tags:
|
11 |
-
- generated_from_trainer
|
12 |
model-index:
|
13 |
- name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full66
|
14 |
results: []
|
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -56,109 +56,109 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.0047 | 14.8428 | 25500 | 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.0036 | 16.0070 | 27500 | 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.0024 | 17.4622 | 30000 | 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.0022 | 18.3353 | 31500 | 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.0015 | 20.0815 | 34500 | 0.
|
128 |
-
| 0.0015 | 20.3725 | 35000 | 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.0008 | 22.4098 | 38500 | 0.
|
136 |
-
| 0.001 | 22.7008 | 39000 | 0.
|
137 |
-
| 0.001 | 22.9919 | 39500 | 0.
|
138 |
-
| 0.0008 | 23.2829 | 40000 | 0.
|
139 |
-
| 0.
|
140 |
-
| 0.001 | 23.8650 | 41000 | 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.0007 | 25.0291 | 43000 | 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.0005 | 26.4843 | 45500 | 0.
|
150 |
-
| 0.
|
151 |
-
| 0.0005 | 27.0664 | 46500 | 0.
|
152 |
-
| 0.0004 | 27.3574 | 47000 | 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.0003 | 29.3946 | 50500 | 0.
|
160 |
-
| 0.0003 | 29.6857 | 51000 | 0.
|
161 |
-
| 0.0002 | 29.9767 | 51500 | 0.
|
162 |
|
163 |
|
164 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
license: mit
|
4 |
+
base_model: FacebookAI/xlm-roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
10 |
- f1
|
11 |
- accuracy
|
|
|
|
|
12 |
model-index:
|
13 |
- name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full66
|
14 |
results: []
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.3798
|
25 |
+
- Precision: 0.5821
|
26 |
+
- Recall: 0.5864
|
27 |
+
- F1: 0.5842
|
28 |
+
- Accuracy: 0.9606
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.3415 | 0.2910 | 500 | 0.2817 | 0.4535 | 0.1387 | 0.2124 | 0.9301 |
|
60 |
+
| 0.2629 | 0.5821 | 1000 | 0.2498 | 0.3527 | 0.1915 | 0.2482 | 0.9340 |
|
61 |
+
| 0.2318 | 0.8731 | 1500 | 0.2322 | 0.3468 | 0.2285 | 0.2755 | 0.9366 |
|
62 |
+
| 0.2056 | 1.1641 | 2000 | 0.2234 | 0.3522 | 0.2851 | 0.3151 | 0.9380 |
|
63 |
+
| 0.1827 | 1.4552 | 2500 | 0.2226 | 0.3487 | 0.3443 | 0.3465 | 0.9395 |
|
64 |
+
| 0.1777 | 1.7462 | 3000 | 0.2044 | 0.4135 | 0.3391 | 0.3726 | 0.9419 |
|
65 |
+
| 0.1627 | 2.0373 | 3500 | 0.2053 | 0.3898 | 0.3799 | 0.3848 | 0.9423 |
|
66 |
+
| 0.1372 | 2.3283 | 4000 | 0.2020 | 0.4118 | 0.3959 | 0.4037 | 0.9434 |
|
67 |
+
| 0.1294 | 2.6193 | 4500 | 0.1890 | 0.4132 | 0.4460 | 0.4289 | 0.9467 |
|
68 |
+
| 0.1224 | 2.9104 | 5000 | 0.1756 | 0.4334 | 0.4686 | 0.4503 | 0.9480 |
|
69 |
+
| 0.0947 | 3.2014 | 5500 | 0.1864 | 0.4487 | 0.5070 | 0.4761 | 0.9491 |
|
70 |
+
| 0.0861 | 3.4924 | 6000 | 0.1806 | 0.5010 | 0.4972 | 0.4991 | 0.9533 |
|
71 |
+
| 0.0815 | 3.7835 | 6500 | 0.1839 | 0.5021 | 0.4905 | 0.4963 | 0.9533 |
|
72 |
+
| 0.0746 | 4.0745 | 7000 | 0.1943 | 0.4900 | 0.5006 | 0.4953 | 0.9534 |
|
73 |
+
| 0.0574 | 4.3655 | 7500 | 0.2050 | 0.5221 | 0.4881 | 0.5045 | 0.9544 |
|
74 |
+
| 0.0585 | 4.6566 | 8000 | 0.1908 | 0.5093 | 0.5351 | 0.5219 | 0.9552 |
|
75 |
+
| 0.0565 | 4.9476 | 8500 | 0.1902 | 0.5107 | 0.5334 | 0.5218 | 0.9552 |
|
76 |
+
| 0.0425 | 5.2386 | 9000 | 0.2168 | 0.5241 | 0.5351 | 0.5296 | 0.9565 |
|
77 |
+
| 0.0412 | 5.5297 | 9500 | 0.2073 | 0.5717 | 0.5116 | 0.5400 | 0.9568 |
|
78 |
+
| 0.0392 | 5.8207 | 10000 | 0.2052 | 0.5331 | 0.5406 | 0.5368 | 0.9561 |
|
79 |
+
| 0.0362 | 6.1118 | 10500 | 0.2221 | 0.4957 | 0.5700 | 0.5303 | 0.9548 |
|
80 |
+
| 0.0291 | 6.4028 | 11000 | 0.2298 | 0.5156 | 0.5431 | 0.5290 | 0.9559 |
|
81 |
+
| 0.0274 | 6.6938 | 11500 | 0.2378 | 0.5018 | 0.5409 | 0.5206 | 0.9548 |
|
82 |
+
| 0.0296 | 6.9849 | 12000 | 0.2342 | 0.5433 | 0.5408 | 0.5420 | 0.9571 |
|
83 |
+
| 0.0201 | 7.2759 | 12500 | 0.2525 | 0.5167 | 0.5777 | 0.5455 | 0.9573 |
|
84 |
+
| 0.0211 | 7.5669 | 13000 | 0.2469 | 0.5491 | 0.5413 | 0.5452 | 0.9577 |
|
85 |
+
| 0.0218 | 7.8580 | 13500 | 0.2429 | 0.5509 | 0.5454 | 0.5481 | 0.9570 |
|
86 |
+
| 0.0178 | 8.1490 | 14000 | 0.2578 | 0.5129 | 0.5468 | 0.5293 | 0.9559 |
|
87 |
+
| 0.0153 | 8.4400 | 14500 | 0.2565 | 0.5540 | 0.5607 | 0.5573 | 0.9584 |
|
88 |
+
| 0.0157 | 8.7311 | 15000 | 0.2661 | 0.5652 | 0.5317 | 0.5479 | 0.9579 |
|
89 |
+
| 0.0158 | 9.0221 | 15500 | 0.2706 | 0.5403 | 0.5604 | 0.5501 | 0.9579 |
|
90 |
+
| 0.012 | 9.3132 | 16000 | 0.2912 | 0.5543 | 0.5359 | 0.5449 | 0.9580 |
|
91 |
+
| 0.0123 | 9.6042 | 16500 | 0.2804 | 0.5234 | 0.5784 | 0.5496 | 0.9573 |
|
92 |
+
| 0.0124 | 9.8952 | 17000 | 0.2640 | 0.5384 | 0.5659 | 0.5518 | 0.9576 |
|
93 |
+
| 0.0106 | 10.1863 | 17500 | 0.2812 | 0.5626 | 0.5481 | 0.5552 | 0.9582 |
|
94 |
+
| 0.0094 | 10.4773 | 18000 | 0.2928 | 0.5317 | 0.5869 | 0.5579 | 0.9574 |
|
95 |
+
| 0.0094 | 10.7683 | 18500 | 0.2820 | 0.5695 | 0.5377 | 0.5532 | 0.9583 |
|
96 |
+
| 0.0098 | 11.0594 | 19000 | 0.2896 | 0.5526 | 0.5574 | 0.5550 | 0.9581 |
|
97 |
+
| 0.0072 | 11.3504 | 19500 | 0.2952 | 0.5509 | 0.5832 | 0.5666 | 0.9584 |
|
98 |
+
| 0.0078 | 11.6414 | 20000 | 0.2940 | 0.5288 | 0.5957 | 0.5603 | 0.9574 |
|
99 |
+
| 0.0078 | 11.9325 | 20500 | 0.2972 | 0.5439 | 0.5634 | 0.5535 | 0.9579 |
|
100 |
+
| 0.0061 | 12.2235 | 21000 | 0.3019 | 0.5683 | 0.5861 | 0.5770 | 0.9596 |
|
101 |
+
| 0.0062 | 12.5146 | 21500 | 0.3057 | 0.5477 | 0.5640 | 0.5557 | 0.9582 |
|
102 |
+
| 0.0065 | 12.8056 | 22000 | 0.3010 | 0.5546 | 0.5703 | 0.5623 | 0.9581 |
|
103 |
+
| 0.0058 | 13.0966 | 22500 | 0.3143 | 0.5460 | 0.5836 | 0.5642 | 0.9589 |
|
104 |
+
| 0.0051 | 13.3877 | 23000 | 0.3061 | 0.5576 | 0.5776 | 0.5674 | 0.9591 |
|
105 |
+
| 0.0056 | 13.6787 | 23500 | 0.3028 | 0.5428 | 0.5813 | 0.5614 | 0.9582 |
|
106 |
+
| 0.0054 | 13.9697 | 24000 | 0.3043 | 0.5553 | 0.5726 | 0.5638 | 0.9581 |
|
107 |
+
| 0.0037 | 14.2608 | 24500 | 0.3197 | 0.5485 | 0.5901 | 0.5685 | 0.9588 |
|
108 |
+
| 0.0043 | 14.5518 | 25000 | 0.3163 | 0.5730 | 0.5585 | 0.5656 | 0.9586 |
|
109 |
+
| 0.0047 | 14.8428 | 25500 | 0.3160 | 0.5476 | 0.5813 | 0.5640 | 0.9587 |
|
110 |
+
| 0.0036 | 15.1339 | 26000 | 0.3385 | 0.6042 | 0.5382 | 0.5693 | 0.9594 |
|
111 |
+
| 0.0036 | 15.4249 | 26500 | 0.3352 | 0.5462 | 0.5786 | 0.5619 | 0.9591 |
|
112 |
+
| 0.0033 | 15.7159 | 27000 | 0.3312 | 0.5505 | 0.5758 | 0.5629 | 0.9587 |
|
113 |
+
| 0.0036 | 16.0070 | 27500 | 0.3457 | 0.5735 | 0.5553 | 0.5642 | 0.9594 |
|
114 |
+
| 0.0027 | 16.2980 | 28000 | 0.3351 | 0.5602 | 0.5703 | 0.5652 | 0.9589 |
|
115 |
+
| 0.0031 | 16.5891 | 28500 | 0.3375 | 0.5714 | 0.5451 | 0.5579 | 0.9589 |
|
116 |
+
| 0.0033 | 16.8801 | 29000 | 0.3349 | 0.5621 | 0.5814 | 0.5716 | 0.9590 |
|
117 |
+
| 0.0024 | 17.1711 | 29500 | 0.3422 | 0.5545 | 0.5869 | 0.5703 | 0.9595 |
|
118 |
+
| 0.0024 | 17.4622 | 30000 | 0.3313 | 0.5552 | 0.6018 | 0.5775 | 0.9588 |
|
119 |
+
| 0.0025 | 17.7532 | 30500 | 0.3302 | 0.5683 | 0.5832 | 0.5757 | 0.9595 |
|
120 |
+
| 0.0023 | 18.0442 | 31000 | 0.3387 | 0.5555 | 0.5845 | 0.5696 | 0.9591 |
|
121 |
+
| 0.0022 | 18.3353 | 31500 | 0.3519 | 0.5757 | 0.5497 | 0.5624 | 0.9591 |
|
122 |
+
| 0.0019 | 18.6263 | 32000 | 0.3471 | 0.5574 | 0.5888 | 0.5727 | 0.9592 |
|
123 |
+
| 0.0022 | 18.9173 | 32500 | 0.3429 | 0.5632 | 0.5882 | 0.5754 | 0.9597 |
|
124 |
+
| 0.0017 | 19.2084 | 33000 | 0.3576 | 0.5673 | 0.5765 | 0.5719 | 0.9599 |
|
125 |
+
| 0.0019 | 19.4994 | 33500 | 0.3459 | 0.5637 | 0.5791 | 0.5713 | 0.9593 |
|
126 |
+
| 0.0017 | 19.7905 | 34000 | 0.3516 | 0.5643 | 0.5686 | 0.5664 | 0.9593 |
|
127 |
+
| 0.0015 | 20.0815 | 34500 | 0.3632 | 0.5790 | 0.5764 | 0.5777 | 0.9599 |
|
128 |
+
| 0.0015 | 20.3725 | 35000 | 0.3528 | 0.5731 | 0.5791 | 0.5761 | 0.9598 |
|
129 |
+
| 0.0015 | 20.6636 | 35500 | 0.3560 | 0.5582 | 0.5788 | 0.5684 | 0.9589 |
|
130 |
+
| 0.0015 | 20.9546 | 36000 | 0.3525 | 0.5698 | 0.5770 | 0.5734 | 0.9593 |
|
131 |
+
| 0.0012 | 21.2456 | 36500 | 0.3562 | 0.5723 | 0.5741 | 0.5732 | 0.9597 |
|
132 |
+
| 0.0013 | 21.5367 | 37000 | 0.3584 | 0.5690 | 0.5679 | 0.5684 | 0.9595 |
|
133 |
+
| 0.0013 | 21.8277 | 37500 | 0.3598 | 0.5547 | 0.6047 | 0.5786 | 0.9593 |
|
134 |
+
| 0.0011 | 22.1187 | 38000 | 0.3639 | 0.5676 | 0.5814 | 0.5744 | 0.9598 |
|
135 |
+
| 0.0008 | 22.4098 | 38500 | 0.3594 | 0.5576 | 0.5881 | 0.5724 | 0.9590 |
|
136 |
+
| 0.001 | 22.7008 | 39000 | 0.3661 | 0.5696 | 0.5786 | 0.5740 | 0.9597 |
|
137 |
+
| 0.001 | 22.9919 | 39500 | 0.3595 | 0.5621 | 0.5905 | 0.5760 | 0.9597 |
|
138 |
+
| 0.0008 | 23.2829 | 40000 | 0.3634 | 0.5700 | 0.5813 | 0.5756 | 0.9603 |
|
139 |
+
| 0.0008 | 23.5739 | 40500 | 0.3619 | 0.5790 | 0.5700 | 0.5745 | 0.9597 |
|
140 |
+
| 0.001 | 23.8650 | 41000 | 0.3704 | 0.5839 | 0.5666 | 0.5751 | 0.9599 |
|
141 |
+
| 0.001 | 24.1560 | 41500 | 0.3639 | 0.5679 | 0.5923 | 0.5798 | 0.9597 |
|
142 |
+
| 0.0008 | 24.4470 | 42000 | 0.3688 | 0.5703 | 0.5773 | 0.5738 | 0.9594 |
|
143 |
+
| 0.0007 | 24.7381 | 42500 | 0.3794 | 0.5712 | 0.5803 | 0.5757 | 0.9600 |
|
144 |
+
| 0.0007 | 25.0291 | 43000 | 0.3754 | 0.5807 | 0.5662 | 0.5733 | 0.9597 |
|
145 |
+
| 0.0006 | 25.3201 | 43500 | 0.3732 | 0.5809 | 0.5866 | 0.5837 | 0.9602 |
|
146 |
+
| 0.0007 | 25.6112 | 44000 | 0.3795 | 0.5940 | 0.5550 | 0.5739 | 0.9598 |
|
147 |
+
| 0.0008 | 25.9022 | 44500 | 0.3721 | 0.5729 | 0.5843 | 0.5786 | 0.9599 |
|
148 |
+
| 0.0004 | 26.1932 | 45000 | 0.3773 | 0.5790 | 0.5734 | 0.5762 | 0.9601 |
|
149 |
+
| 0.0005 | 26.4843 | 45500 | 0.3811 | 0.5788 | 0.5713 | 0.5750 | 0.9600 |
|
150 |
+
| 0.0005 | 26.7753 | 46000 | 0.3787 | 0.5757 | 0.5901 | 0.5828 | 0.9603 |
|
151 |
+
| 0.0005 | 27.0664 | 46500 | 0.3766 | 0.5740 | 0.5817 | 0.5779 | 0.9601 |
|
152 |
+
| 0.0004 | 27.3574 | 47000 | 0.3786 | 0.5758 | 0.5800 | 0.5779 | 0.9602 |
|
153 |
+
| 0.0004 | 27.6484 | 47500 | 0.3800 | 0.5755 | 0.5866 | 0.5810 | 0.9603 |
|
154 |
+
| 0.0004 | 27.9395 | 48000 | 0.3824 | 0.5843 | 0.5752 | 0.5798 | 0.9603 |
|
155 |
+
| 0.0004 | 28.2305 | 48500 | 0.3836 | 0.5829 | 0.5739 | 0.5784 | 0.9603 |
|
156 |
+
| 0.0002 | 28.5215 | 49000 | 0.3813 | 0.5894 | 0.5804 | 0.5849 | 0.9607 |
|
157 |
+
| 0.0004 | 28.8126 | 49500 | 0.3817 | 0.5824 | 0.5852 | 0.5838 | 0.9604 |
|
158 |
+
| 0.0004 | 29.1036 | 50000 | 0.3816 | 0.5814 | 0.5816 | 0.5815 | 0.9604 |
|
159 |
+
| 0.0003 | 29.3946 | 50500 | 0.3800 | 0.5804 | 0.5865 | 0.5834 | 0.9605 |
|
160 |
+
| 0.0003 | 29.6857 | 51000 | 0.3794 | 0.5831 | 0.5864 | 0.5847 | 0.9606 |
|
161 |
+
| 0.0002 | 29.9767 | 51500 | 0.3798 | 0.5821 | 0.5864 | 0.5842 | 0.9606 |
|
162 |
|
163 |
|
164 |
### Framework versions
|
eval_result_ner.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"ceb_gja": {"precision": 0.
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.33, "recall": 0.673469387755102, "f1": 0.4429530201342282, "accuracy": 0.9351351351351351}, "en_pud": {"precision": 0.4882943143812709, "recall": 0.40744186046511627, "f1": 0.4442190669371196, "accuracy": 0.9479599546656592}, "de_pud": {"precision": 0.1302555647155812, "recall": 0.3041385948026949, "f1": 0.1823953823953824, "accuracy": 0.8445454971637523}, "pt_pud": {"precision": 0.5361904761904762, "recall": 0.5122838944494995, "f1": 0.5239646347138204, "accuracy": 0.9594992950826676}, "ru_pud": {"precision": 0.013888888888888888, "recall": 0.05115830115830116, "f1": 0.021846661170651278, "accuracy": 0.642056316197365}, "sv_pud": {"precision": 0.5278688524590164, "recall": 0.3129251700680272, "f1": 0.39292251372788284, "accuracy": 0.9450094359404487}, "tl_trg": {"precision": 0.2777777777777778, "recall": 0.6521739130434783, "f1": 0.3896103896103896, "accuracy": 0.9359673024523161}, "tl_ugnayan": {"precision": 0.047619047619047616, "recall": 0.12121212121212122, "f1": 0.06837606837606837, "accuracy": 0.8933454876937101}, "zh_gsd": {"precision": 0.4967741935483871, "recall": 0.5019556714471969, "f1": 0.49935149156939035, "accuracy": 0.9324841824841825}, "zh_gsdsimp": {"precision": 0.4718498659517426, "recall": 0.4613368283093054, "f1": 0.4665341285619616, "accuracy": 0.9306526806526807}, "hr_set": {"precision": 0.7073170731707317, "recall": 0.7234497505345688, "f1": 0.715292459478506, "accuracy": 0.9685490519373454}, "da_ddt": {"precision": 0.6351706036745407, "recall": 0.5413870246085011, "f1": 0.5845410628019323, "accuracy": 0.9699690711363863}, "en_ewt": {"precision": 0.6130434782608696, "recall": 0.5183823529411765, "f1": 0.5617529880478089, "accuracy": 0.9589990835558034}, "pt_bosque": {"precision": 0.5925925925925926, "recall": 0.5925925925925926, "f1": 0.5925925925925926, "accuracy": 0.9646428053905232}, "sr_set": {"precision": 0.7482678983833718, "recall": 0.7650531286894924, "f1": 0.7565674255691769, "accuracy": 0.9674284213291305}, "sk_snk": {"precision": 0.3918918918918919, "recall": 0.28524590163934427, "f1": 0.3301707779886148, "accuracy": 0.9173994974874372}, "sv_talbanken": {"precision": 0.7142857142857143, "recall": 0.5867346938775511, "f1": 0.6442577030812325, "accuracy": 0.9937184080090298}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 939737140
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c236dd5e2a7db48082ebb7f2a6b7f3e2dddf98cfce857da9f8d965bbc7d68bb
|
3 |
size 939737140
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fc5178cc19ea9d376e41c1432469b7123ee10f631e6afb84b4d4421fc75a30f
|
3 |
size 5304
|