haryoaw commited on
Commit
6f30a8c
1 Parent(s): 8917ea5

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +111 -111
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: FacebookAI/xlm-roberta-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full66
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3797
25
- - Precision: 0.5784
26
- - Recall: 0.5838
27
- - F1: 0.5811
28
- - Accuracy: 0.9603
29
 
30
  ## Model description
31
 
@@ -56,109 +56,109 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.3408 | 0.2910 | 500 | 0.2794 | 0.4334 | 0.1324 | 0.2029 | 0.9300 |
60
- | 0.2628 | 0.5821 | 1000 | 0.2572 | 0.3798 | 0.1821 | 0.2461 | 0.9338 |
61
- | 0.2304 | 0.8731 | 1500 | 0.2308 | 0.3281 | 0.2496 | 0.2835 | 0.9358 |
62
- | 0.2045 | 1.1641 | 2000 | 0.2268 | 0.3681 | 0.2714 | 0.3124 | 0.9392 |
63
- | 0.1823 | 1.4552 | 2500 | 0.2209 | 0.3551 | 0.3349 | 0.3447 | 0.9403 |
64
- | 0.1766 | 1.7462 | 3000 | 0.2035 | 0.3929 | 0.3717 | 0.3820 | 0.9425 |
65
- | 0.1621 | 2.0373 | 3500 | 0.2079 | 0.3953 | 0.3604 | 0.3770 | 0.9432 |
66
- | 0.1378 | 2.3283 | 4000 | 0.2059 | 0.3782 | 0.3575 | 0.3676 | 0.9416 |
67
- | 0.1318 | 2.6193 | 4500 | 0.1908 | 0.3945 | 0.4442 | 0.4179 | 0.9446 |
68
- | 0.1246 | 2.9104 | 5000 | 0.1786 | 0.4426 | 0.4577 | 0.4500 | 0.9481 |
69
- | 0.0996 | 3.2014 | 5500 | 0.1872 | 0.4646 | 0.4939 | 0.4788 | 0.9497 |
70
- | 0.0899 | 3.4924 | 6000 | 0.1793 | 0.4740 | 0.5034 | 0.4882 | 0.9519 |
71
- | 0.084 | 3.7835 | 6500 | 0.1893 | 0.5026 | 0.4519 | 0.4759 | 0.9527 |
72
- | 0.0788 | 4.0745 | 7000 | 0.1942 | 0.5238 | 0.4819 | 0.5020 | 0.9536 |
73
- | 0.0598 | 4.3655 | 7500 | 0.1893 | 0.4940 | 0.5193 | 0.5063 | 0.9542 |
74
- | 0.0608 | 4.6566 | 8000 | 0.1886 | 0.5001 | 0.5405 | 0.5195 | 0.9546 |
75
- | 0.0596 | 4.9476 | 8500 | 0.1859 | 0.5008 | 0.5517 | 0.5250 | 0.9549 |
76
- | 0.0442 | 5.2386 | 9000 | 0.2093 | 0.5196 | 0.5301 | 0.5248 | 0.9554 |
77
- | 0.0427 | 5.5297 | 9500 | 0.1915 | 0.5297 | 0.5451 | 0.5373 | 0.9559 |
78
- | 0.0404 | 5.8207 | 10000 | 0.1913 | 0.5304 | 0.5360 | 0.5332 | 0.9561 |
79
- | 0.0382 | 6.1118 | 10500 | 0.2220 | 0.5188 | 0.5467 | 0.5324 | 0.9557 |
80
- | 0.0305 | 6.4028 | 11000 | 0.2295 | 0.5153 | 0.5471 | 0.5307 | 0.9563 |
81
- | 0.0301 | 6.6938 | 11500 | 0.2242 | 0.5209 | 0.5676 | 0.5433 | 0.9573 |
82
- | 0.0309 | 6.9849 | 12000 | 0.2416 | 0.5449 | 0.5348 | 0.5398 | 0.9575 |
83
- | 0.0213 | 7.2759 | 12500 | 0.2677 | 0.5205 | 0.5389 | 0.5295 | 0.9561 |
84
- | 0.0219 | 7.5669 | 13000 | 0.2410 | 0.5156 | 0.5715 | 0.5421 | 0.9562 |
85
- | 0.0231 | 7.8580 | 13500 | 0.2360 | 0.5402 | 0.5787 | 0.5588 | 0.9579 |
86
- | 0.0195 | 8.1490 | 14000 | 0.2526 | 0.5415 | 0.5647 | 0.5529 | 0.9578 |
87
- | 0.0154 | 8.4400 | 14500 | 0.2584 | 0.5547 | 0.5597 | 0.5572 | 0.9577 |
88
- | 0.0166 | 8.7311 | 15000 | 0.2484 | 0.5420 | 0.5817 | 0.5612 | 0.9572 |
89
- | 0.0175 | 9.0221 | 15500 | 0.2709 | 0.5349 | 0.5513 | 0.5430 | 0.9573 |
90
- | 0.0125 | 9.3132 | 16000 | 0.2676 | 0.5500 | 0.5663 | 0.5580 | 0.9582 |
91
- | 0.0128 | 9.6042 | 16500 | 0.2751 | 0.5543 | 0.5370 | 0.5455 | 0.9577 |
92
- | 0.0134 | 9.8952 | 17000 | 0.2535 | 0.5543 | 0.5608 | 0.5576 | 0.9581 |
93
- | 0.011 | 10.1863 | 17500 | 0.2614 | 0.5496 | 0.5659 | 0.5576 | 0.9579 |
94
- | 0.0098 | 10.4773 | 18000 | 0.2877 | 0.5373 | 0.5617 | 0.5492 | 0.9575 |
95
- | 0.0097 | 10.7683 | 18500 | 0.2917 | 0.5408 | 0.5566 | 0.5486 | 0.9583 |
96
- | 0.01 | 11.0594 | 19000 | 0.2877 | 0.5429 | 0.5666 | 0.5545 | 0.9578 |
97
- | 0.0083 | 11.3504 | 19500 | 0.2843 | 0.5485 | 0.5825 | 0.5650 | 0.9581 |
98
- | 0.0083 | 11.6414 | 20000 | 0.2886 | 0.5418 | 0.5797 | 0.5601 | 0.9576 |
99
- | 0.0084 | 11.9325 | 20500 | 0.2848 | 0.5359 | 0.5874 | 0.5604 | 0.9583 |
100
- | 0.007 | 12.2235 | 21000 | 0.2902 | 0.5650 | 0.5623 | 0.5636 | 0.9583 |
101
- | 0.0065 | 12.5146 | 21500 | 0.2942 | 0.5670 | 0.5644 | 0.5657 | 0.9588 |
102
- | 0.0064 | 12.8056 | 22000 | 0.3035 | 0.5334 | 0.5722 | 0.5521 | 0.9575 |
103
- | 0.0059 | 13.0966 | 22500 | 0.3027 | 0.5666 | 0.5594 | 0.5630 | 0.9586 |
104
- | 0.005 | 13.3877 | 23000 | 0.2952 | 0.5424 | 0.5799 | 0.5605 | 0.9581 |
105
- | 0.0053 | 13.6787 | 23500 | 0.3049 | 0.5450 | 0.5833 | 0.5635 | 0.9580 |
106
- | 0.0053 | 13.9697 | 24000 | 0.3135 | 0.5605 | 0.5677 | 0.5641 | 0.9584 |
107
- | 0.0041 | 14.2608 | 24500 | 0.3127 | 0.5565 | 0.5709 | 0.5636 | 0.9583 |
108
- | 0.0041 | 14.5518 | 25000 | 0.3154 | 0.5568 | 0.5739 | 0.5652 | 0.9592 |
109
- | 0.0047 | 14.8428 | 25500 | 0.3104 | 0.5662 | 0.5755 | 0.5708 | 0.9593 |
110
- | 0.0039 | 15.1339 | 26000 | 0.3087 | 0.5429 | 0.5915 | 0.5662 | 0.9584 |
111
- | 0.0035 | 15.4249 | 26500 | 0.3177 | 0.5391 | 0.5882 | 0.5626 | 0.9583 |
112
- | 0.0038 | 15.7159 | 27000 | 0.3422 | 0.5815 | 0.5309 | 0.5551 | 0.9593 |
113
- | 0.0036 | 16.0070 | 27500 | 0.3223 | 0.5469 | 0.5865 | 0.5660 | 0.9588 |
114
- | 0.0028 | 16.2980 | 28000 | 0.3237 | 0.5630 | 0.5838 | 0.5732 | 0.9595 |
115
- | 0.0027 | 16.5891 | 28500 | 0.3182 | 0.5612 | 0.5760 | 0.5685 | 0.9588 |
116
- | 0.0035 | 16.8801 | 29000 | 0.3274 | 0.5461 | 0.5817 | 0.5634 | 0.9589 |
117
- | 0.0027 | 17.1711 | 29500 | 0.3345 | 0.5560 | 0.5774 | 0.5665 | 0.9590 |
118
- | 0.0024 | 17.4622 | 30000 | 0.3319 | 0.5582 | 0.5737 | 0.5658 | 0.9593 |
119
- | 0.0024 | 17.7532 | 30500 | 0.3370 | 0.5611 | 0.5760 | 0.5684 | 0.9594 |
120
- | 0.0027 | 18.0442 | 31000 | 0.3351 | 0.5557 | 0.5941 | 0.5743 | 0.9590 |
121
- | 0.0022 | 18.3353 | 31500 | 0.3319 | 0.5675 | 0.5670 | 0.5673 | 0.9592 |
122
- | 0.0022 | 18.6263 | 32000 | 0.3314 | 0.5481 | 0.5907 | 0.5686 | 0.9586 |
123
- | 0.0019 | 18.9173 | 32500 | 0.3346 | 0.5769 | 0.5633 | 0.5700 | 0.9596 |
124
- | 0.0018 | 19.2084 | 33000 | 0.3432 | 0.5798 | 0.5679 | 0.5738 | 0.9595 |
125
- | 0.0017 | 19.4994 | 33500 | 0.3403 | 0.5510 | 0.5995 | 0.5742 | 0.9594 |
126
- | 0.0016 | 19.7905 | 34000 | 0.3500 | 0.5698 | 0.5809 | 0.5753 | 0.9595 |
127
- | 0.0015 | 20.0815 | 34500 | 0.3510 | 0.5704 | 0.5790 | 0.5747 | 0.9597 |
128
- | 0.0015 | 20.3725 | 35000 | 0.3580 | 0.5848 | 0.5601 | 0.5722 | 0.9597 |
129
- | 0.0014 | 20.6636 | 35500 | 0.3540 | 0.5621 | 0.5856 | 0.5736 | 0.9598 |
130
- | 0.0014 | 20.9546 | 36000 | 0.3482 | 0.5535 | 0.5923 | 0.5722 | 0.9595 |
131
- | 0.0011 | 21.2456 | 36500 | 0.3551 | 0.5708 | 0.5750 | 0.5729 | 0.9598 |
132
- | 0.0009 | 21.5367 | 37000 | 0.3560 | 0.5645 | 0.5846 | 0.5744 | 0.9597 |
133
- | 0.0015 | 21.8277 | 37500 | 0.3618 | 0.5754 | 0.5763 | 0.5758 | 0.9598 |
134
- | 0.0012 | 22.1187 | 38000 | 0.3538 | 0.5671 | 0.5874 | 0.5770 | 0.9596 |
135
- | 0.0008 | 22.4098 | 38500 | 0.3651 | 0.5697 | 0.5747 | 0.5722 | 0.9596 |
136
- | 0.001 | 22.7008 | 39000 | 0.3731 | 0.5819 | 0.5659 | 0.5738 | 0.9598 |
137
- | 0.001 | 22.9919 | 39500 | 0.3682 | 0.5569 | 0.5905 | 0.5732 | 0.9590 |
138
- | 0.0008 | 23.2829 | 40000 | 0.3646 | 0.5675 | 0.5875 | 0.5773 | 0.9596 |
139
- | 0.0009 | 23.5739 | 40500 | 0.3660 | 0.5611 | 0.5825 | 0.5716 | 0.9595 |
140
- | 0.001 | 23.8650 | 41000 | 0.3618 | 0.5686 | 0.5851 | 0.5767 | 0.9597 |
141
- | 0.0008 | 24.1560 | 41500 | 0.3714 | 0.5743 | 0.5747 | 0.5745 | 0.9598 |
142
- | 0.0006 | 24.4470 | 42000 | 0.3720 | 0.5810 | 0.5627 | 0.5717 | 0.9596 |
143
- | 0.0006 | 24.7381 | 42500 | 0.3641 | 0.5552 | 0.5933 | 0.5736 | 0.9592 |
144
- | 0.0007 | 25.0291 | 43000 | 0.3785 | 0.5703 | 0.5680 | 0.5692 | 0.9593 |
145
- | 0.0004 | 25.3201 | 43500 | 0.3811 | 0.5718 | 0.5716 | 0.5717 | 0.9600 |
146
- | 0.0006 | 25.6112 | 44000 | 0.3801 | 0.5773 | 0.5755 | 0.5764 | 0.9603 |
147
- | 0.0005 | 25.9022 | 44500 | 0.3809 | 0.5863 | 0.5654 | 0.5757 | 0.9601 |
148
- | 0.0005 | 26.1932 | 45000 | 0.3738 | 0.5712 | 0.5709 | 0.5710 | 0.9597 |
149
- | 0.0005 | 26.4843 | 45500 | 0.3779 | 0.5635 | 0.5784 | 0.5708 | 0.9593 |
150
- | 0.0006 | 26.7753 | 46000 | 0.3838 | 0.5786 | 0.5651 | 0.5718 | 0.9600 |
151
- | 0.0005 | 27.0664 | 46500 | 0.3765 | 0.5729 | 0.5835 | 0.5781 | 0.9600 |
152
- | 0.0004 | 27.3574 | 47000 | 0.3760 | 0.5715 | 0.5859 | 0.5786 | 0.9598 |
153
- | 0.0005 | 27.6484 | 47500 | 0.3755 | 0.5590 | 0.5900 | 0.5741 | 0.9594 |
154
- | 0.0003 | 27.9395 | 48000 | 0.3781 | 0.5663 | 0.5872 | 0.5766 | 0.9598 |
155
- | 0.0003 | 28.2305 | 48500 | 0.3781 | 0.5703 | 0.5840 | 0.5771 | 0.9598 |
156
- | 0.0003 | 28.5215 | 49000 | 0.3815 | 0.5763 | 0.5799 | 0.5781 | 0.9601 |
157
- | 0.0003 | 28.8126 | 49500 | 0.3814 | 0.5692 | 0.5777 | 0.5734 | 0.9597 |
158
- | 0.0002 | 29.1036 | 50000 | 0.3807 | 0.5729 | 0.5836 | 0.5782 | 0.9601 |
159
- | 0.0003 | 29.3946 | 50500 | 0.3790 | 0.5740 | 0.5827 | 0.5783 | 0.9600 |
160
- | 0.0003 | 29.6857 | 51000 | 0.3803 | 0.5779 | 0.5819 | 0.5799 | 0.9603 |
161
- | 0.0002 | 29.9767 | 51500 | 0.3797 | 0.5784 | 0.5838 | 0.5811 | 0.9603 |
162
 
163
 
164
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-full-xlmr_data-univner_full66
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3798
25
+ - Precision: 0.5821
26
+ - Recall: 0.5864
27
+ - F1: 0.5842
28
+ - Accuracy: 0.9606
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3415 | 0.2910 | 500 | 0.2817 | 0.4535 | 0.1387 | 0.2124 | 0.9301 |
60
+ | 0.2629 | 0.5821 | 1000 | 0.2498 | 0.3527 | 0.1915 | 0.2482 | 0.9340 |
61
+ | 0.2318 | 0.8731 | 1500 | 0.2322 | 0.3468 | 0.2285 | 0.2755 | 0.9366 |
62
+ | 0.2056 | 1.1641 | 2000 | 0.2234 | 0.3522 | 0.2851 | 0.3151 | 0.9380 |
63
+ | 0.1827 | 1.4552 | 2500 | 0.2226 | 0.3487 | 0.3443 | 0.3465 | 0.9395 |
64
+ | 0.1777 | 1.7462 | 3000 | 0.2044 | 0.4135 | 0.3391 | 0.3726 | 0.9419 |
65
+ | 0.1627 | 2.0373 | 3500 | 0.2053 | 0.3898 | 0.3799 | 0.3848 | 0.9423 |
66
+ | 0.1372 | 2.3283 | 4000 | 0.2020 | 0.4118 | 0.3959 | 0.4037 | 0.9434 |
67
+ | 0.1294 | 2.6193 | 4500 | 0.1890 | 0.4132 | 0.4460 | 0.4289 | 0.9467 |
68
+ | 0.1224 | 2.9104 | 5000 | 0.1756 | 0.4334 | 0.4686 | 0.4503 | 0.9480 |
69
+ | 0.0947 | 3.2014 | 5500 | 0.1864 | 0.4487 | 0.5070 | 0.4761 | 0.9491 |
70
+ | 0.0861 | 3.4924 | 6000 | 0.1806 | 0.5010 | 0.4972 | 0.4991 | 0.9533 |
71
+ | 0.0815 | 3.7835 | 6500 | 0.1839 | 0.5021 | 0.4905 | 0.4963 | 0.9533 |
72
+ | 0.0746 | 4.0745 | 7000 | 0.1943 | 0.4900 | 0.5006 | 0.4953 | 0.9534 |
73
+ | 0.0574 | 4.3655 | 7500 | 0.2050 | 0.5221 | 0.4881 | 0.5045 | 0.9544 |
74
+ | 0.0585 | 4.6566 | 8000 | 0.1908 | 0.5093 | 0.5351 | 0.5219 | 0.9552 |
75
+ | 0.0565 | 4.9476 | 8500 | 0.1902 | 0.5107 | 0.5334 | 0.5218 | 0.9552 |
76
+ | 0.0425 | 5.2386 | 9000 | 0.2168 | 0.5241 | 0.5351 | 0.5296 | 0.9565 |
77
+ | 0.0412 | 5.5297 | 9500 | 0.2073 | 0.5717 | 0.5116 | 0.5400 | 0.9568 |
78
+ | 0.0392 | 5.8207 | 10000 | 0.2052 | 0.5331 | 0.5406 | 0.5368 | 0.9561 |
79
+ | 0.0362 | 6.1118 | 10500 | 0.2221 | 0.4957 | 0.5700 | 0.5303 | 0.9548 |
80
+ | 0.0291 | 6.4028 | 11000 | 0.2298 | 0.5156 | 0.5431 | 0.5290 | 0.9559 |
81
+ | 0.0274 | 6.6938 | 11500 | 0.2378 | 0.5018 | 0.5409 | 0.5206 | 0.9548 |
82
+ | 0.0296 | 6.9849 | 12000 | 0.2342 | 0.5433 | 0.5408 | 0.5420 | 0.9571 |
83
+ | 0.0201 | 7.2759 | 12500 | 0.2525 | 0.5167 | 0.5777 | 0.5455 | 0.9573 |
84
+ | 0.0211 | 7.5669 | 13000 | 0.2469 | 0.5491 | 0.5413 | 0.5452 | 0.9577 |
85
+ | 0.0218 | 7.8580 | 13500 | 0.2429 | 0.5509 | 0.5454 | 0.5481 | 0.9570 |
86
+ | 0.0178 | 8.1490 | 14000 | 0.2578 | 0.5129 | 0.5468 | 0.5293 | 0.9559 |
87
+ | 0.0153 | 8.4400 | 14500 | 0.2565 | 0.5540 | 0.5607 | 0.5573 | 0.9584 |
88
+ | 0.0157 | 8.7311 | 15000 | 0.2661 | 0.5652 | 0.5317 | 0.5479 | 0.9579 |
89
+ | 0.0158 | 9.0221 | 15500 | 0.2706 | 0.5403 | 0.5604 | 0.5501 | 0.9579 |
90
+ | 0.012 | 9.3132 | 16000 | 0.2912 | 0.5543 | 0.5359 | 0.5449 | 0.9580 |
91
+ | 0.0123 | 9.6042 | 16500 | 0.2804 | 0.5234 | 0.5784 | 0.5496 | 0.9573 |
92
+ | 0.0124 | 9.8952 | 17000 | 0.2640 | 0.5384 | 0.5659 | 0.5518 | 0.9576 |
93
+ | 0.0106 | 10.1863 | 17500 | 0.2812 | 0.5626 | 0.5481 | 0.5552 | 0.9582 |
94
+ | 0.0094 | 10.4773 | 18000 | 0.2928 | 0.5317 | 0.5869 | 0.5579 | 0.9574 |
95
+ | 0.0094 | 10.7683 | 18500 | 0.2820 | 0.5695 | 0.5377 | 0.5532 | 0.9583 |
96
+ | 0.0098 | 11.0594 | 19000 | 0.2896 | 0.5526 | 0.5574 | 0.5550 | 0.9581 |
97
+ | 0.0072 | 11.3504 | 19500 | 0.2952 | 0.5509 | 0.5832 | 0.5666 | 0.9584 |
98
+ | 0.0078 | 11.6414 | 20000 | 0.2940 | 0.5288 | 0.5957 | 0.5603 | 0.9574 |
99
+ | 0.0078 | 11.9325 | 20500 | 0.2972 | 0.5439 | 0.5634 | 0.5535 | 0.9579 |
100
+ | 0.0061 | 12.2235 | 21000 | 0.3019 | 0.5683 | 0.5861 | 0.5770 | 0.9596 |
101
+ | 0.0062 | 12.5146 | 21500 | 0.3057 | 0.5477 | 0.5640 | 0.5557 | 0.9582 |
102
+ | 0.0065 | 12.8056 | 22000 | 0.3010 | 0.5546 | 0.5703 | 0.5623 | 0.9581 |
103
+ | 0.0058 | 13.0966 | 22500 | 0.3143 | 0.5460 | 0.5836 | 0.5642 | 0.9589 |
104
+ | 0.0051 | 13.3877 | 23000 | 0.3061 | 0.5576 | 0.5776 | 0.5674 | 0.9591 |
105
+ | 0.0056 | 13.6787 | 23500 | 0.3028 | 0.5428 | 0.5813 | 0.5614 | 0.9582 |
106
+ | 0.0054 | 13.9697 | 24000 | 0.3043 | 0.5553 | 0.5726 | 0.5638 | 0.9581 |
107
+ | 0.0037 | 14.2608 | 24500 | 0.3197 | 0.5485 | 0.5901 | 0.5685 | 0.9588 |
108
+ | 0.0043 | 14.5518 | 25000 | 0.3163 | 0.5730 | 0.5585 | 0.5656 | 0.9586 |
109
+ | 0.0047 | 14.8428 | 25500 | 0.3160 | 0.5476 | 0.5813 | 0.5640 | 0.9587 |
110
+ | 0.0036 | 15.1339 | 26000 | 0.3385 | 0.6042 | 0.5382 | 0.5693 | 0.9594 |
111
+ | 0.0036 | 15.4249 | 26500 | 0.3352 | 0.5462 | 0.5786 | 0.5619 | 0.9591 |
112
+ | 0.0033 | 15.7159 | 27000 | 0.3312 | 0.5505 | 0.5758 | 0.5629 | 0.9587 |
113
+ | 0.0036 | 16.0070 | 27500 | 0.3457 | 0.5735 | 0.5553 | 0.5642 | 0.9594 |
114
+ | 0.0027 | 16.2980 | 28000 | 0.3351 | 0.5602 | 0.5703 | 0.5652 | 0.9589 |
115
+ | 0.0031 | 16.5891 | 28500 | 0.3375 | 0.5714 | 0.5451 | 0.5579 | 0.9589 |
116
+ | 0.0033 | 16.8801 | 29000 | 0.3349 | 0.5621 | 0.5814 | 0.5716 | 0.9590 |
117
+ | 0.0024 | 17.1711 | 29500 | 0.3422 | 0.5545 | 0.5869 | 0.5703 | 0.9595 |
118
+ | 0.0024 | 17.4622 | 30000 | 0.3313 | 0.5552 | 0.6018 | 0.5775 | 0.9588 |
119
+ | 0.0025 | 17.7532 | 30500 | 0.3302 | 0.5683 | 0.5832 | 0.5757 | 0.9595 |
120
+ | 0.0023 | 18.0442 | 31000 | 0.3387 | 0.5555 | 0.5845 | 0.5696 | 0.9591 |
121
+ | 0.0022 | 18.3353 | 31500 | 0.3519 | 0.5757 | 0.5497 | 0.5624 | 0.9591 |
122
+ | 0.0019 | 18.6263 | 32000 | 0.3471 | 0.5574 | 0.5888 | 0.5727 | 0.9592 |
123
+ | 0.0022 | 18.9173 | 32500 | 0.3429 | 0.5632 | 0.5882 | 0.5754 | 0.9597 |
124
+ | 0.0017 | 19.2084 | 33000 | 0.3576 | 0.5673 | 0.5765 | 0.5719 | 0.9599 |
125
+ | 0.0019 | 19.4994 | 33500 | 0.3459 | 0.5637 | 0.5791 | 0.5713 | 0.9593 |
126
+ | 0.0017 | 19.7905 | 34000 | 0.3516 | 0.5643 | 0.5686 | 0.5664 | 0.9593 |
127
+ | 0.0015 | 20.0815 | 34500 | 0.3632 | 0.5790 | 0.5764 | 0.5777 | 0.9599 |
128
+ | 0.0015 | 20.3725 | 35000 | 0.3528 | 0.5731 | 0.5791 | 0.5761 | 0.9598 |
129
+ | 0.0015 | 20.6636 | 35500 | 0.3560 | 0.5582 | 0.5788 | 0.5684 | 0.9589 |
130
+ | 0.0015 | 20.9546 | 36000 | 0.3525 | 0.5698 | 0.5770 | 0.5734 | 0.9593 |
131
+ | 0.0012 | 21.2456 | 36500 | 0.3562 | 0.5723 | 0.5741 | 0.5732 | 0.9597 |
132
+ | 0.0013 | 21.5367 | 37000 | 0.3584 | 0.5690 | 0.5679 | 0.5684 | 0.9595 |
133
+ | 0.0013 | 21.8277 | 37500 | 0.3598 | 0.5547 | 0.6047 | 0.5786 | 0.9593 |
134
+ | 0.0011 | 22.1187 | 38000 | 0.3639 | 0.5676 | 0.5814 | 0.5744 | 0.9598 |
135
+ | 0.0008 | 22.4098 | 38500 | 0.3594 | 0.5576 | 0.5881 | 0.5724 | 0.9590 |
136
+ | 0.001 | 22.7008 | 39000 | 0.3661 | 0.5696 | 0.5786 | 0.5740 | 0.9597 |
137
+ | 0.001 | 22.9919 | 39500 | 0.3595 | 0.5621 | 0.5905 | 0.5760 | 0.9597 |
138
+ | 0.0008 | 23.2829 | 40000 | 0.3634 | 0.5700 | 0.5813 | 0.5756 | 0.9603 |
139
+ | 0.0008 | 23.5739 | 40500 | 0.3619 | 0.5790 | 0.5700 | 0.5745 | 0.9597 |
140
+ | 0.001 | 23.8650 | 41000 | 0.3704 | 0.5839 | 0.5666 | 0.5751 | 0.9599 |
141
+ | 0.001 | 24.1560 | 41500 | 0.3639 | 0.5679 | 0.5923 | 0.5798 | 0.9597 |
142
+ | 0.0008 | 24.4470 | 42000 | 0.3688 | 0.5703 | 0.5773 | 0.5738 | 0.9594 |
143
+ | 0.0007 | 24.7381 | 42500 | 0.3794 | 0.5712 | 0.5803 | 0.5757 | 0.9600 |
144
+ | 0.0007 | 25.0291 | 43000 | 0.3754 | 0.5807 | 0.5662 | 0.5733 | 0.9597 |
145
+ | 0.0006 | 25.3201 | 43500 | 0.3732 | 0.5809 | 0.5866 | 0.5837 | 0.9602 |
146
+ | 0.0007 | 25.6112 | 44000 | 0.3795 | 0.5940 | 0.5550 | 0.5739 | 0.9598 |
147
+ | 0.0008 | 25.9022 | 44500 | 0.3721 | 0.5729 | 0.5843 | 0.5786 | 0.9599 |
148
+ | 0.0004 | 26.1932 | 45000 | 0.3773 | 0.5790 | 0.5734 | 0.5762 | 0.9601 |
149
+ | 0.0005 | 26.4843 | 45500 | 0.3811 | 0.5788 | 0.5713 | 0.5750 | 0.9600 |
150
+ | 0.0005 | 26.7753 | 46000 | 0.3787 | 0.5757 | 0.5901 | 0.5828 | 0.9603 |
151
+ | 0.0005 | 27.0664 | 46500 | 0.3766 | 0.5740 | 0.5817 | 0.5779 | 0.9601 |
152
+ | 0.0004 | 27.3574 | 47000 | 0.3786 | 0.5758 | 0.5800 | 0.5779 | 0.9602 |
153
+ | 0.0004 | 27.6484 | 47500 | 0.3800 | 0.5755 | 0.5866 | 0.5810 | 0.9603 |
154
+ | 0.0004 | 27.9395 | 48000 | 0.3824 | 0.5843 | 0.5752 | 0.5798 | 0.9603 |
155
+ | 0.0004 | 28.2305 | 48500 | 0.3836 | 0.5829 | 0.5739 | 0.5784 | 0.9603 |
156
+ | 0.0002 | 28.5215 | 49000 | 0.3813 | 0.5894 | 0.5804 | 0.5849 | 0.9607 |
157
+ | 0.0004 | 28.8126 | 49500 | 0.3817 | 0.5824 | 0.5852 | 0.5838 | 0.9604 |
158
+ | 0.0004 | 29.1036 | 50000 | 0.3816 | 0.5814 | 0.5816 | 0.5815 | 0.9604 |
159
+ | 0.0003 | 29.3946 | 50500 | 0.3800 | 0.5804 | 0.5865 | 0.5834 | 0.9605 |
160
+ | 0.0003 | 29.6857 | 51000 | 0.3794 | 0.5831 | 0.5864 | 0.5847 | 0.9606 |
161
+ | 0.0002 | 29.9767 | 51500 | 0.3798 | 0.5821 | 0.5864 | 0.5842 | 0.9606 |
162
 
163
 
164
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.4189189189189189, "recall": 0.6326530612244898, "f1": 0.5040650406504065, "accuracy": 0.9544401544401544}, "en_pud": {"precision": 0.48645720476706394, "recall": 0.41767441860465115, "f1": 0.4494494494494494, "accuracy": 0.9482905175670571}, "de_pud": {"precision": 0.12193308550185873, "recall": 0.3156881616939365, "f1": 0.17591847680343256, "accuracy": 0.830715859547138}, "pt_pud": {"precision": 0.5383912248628885, "recall": 0.5359417652411284, "f1": 0.5371637026903785, "accuracy": 0.9594565728200966}, "ru_pud": {"precision": 0.013193322563274098, "recall": 0.0472972972972973, "f1": 0.02063157894736842, "accuracy": 0.662309480754327}, "sv_pud": {"precision": 0.48665620094191525, "recall": 0.3012633624878523, "f1": 0.37214885954381755, "accuracy": 0.9444327951352485}, "tl_trg": {"precision": 0.25, "recall": 0.391304347826087, "f1": 0.3050847457627119, "accuracy": 0.9482288828337875}, "tl_ugnayan": {"precision": 0.06349206349206349, "recall": 0.12121212121212122, "f1": 0.08333333333333333, "accuracy": 0.9152233363719234}, "zh_gsd": {"precision": 0.47547169811320755, "recall": 0.49282920469361147, "f1": 0.4839948783610756, "accuracy": 0.9306526806526807}, "zh_gsdsimp": {"precision": 0.4884020618556701, "recall": 0.4967234600262123, "f1": 0.49252761533463285, "accuracy": 0.9328171828171828}, "hr_set": {"precision": 0.7153846153846154, "recall": 0.729151817533856, "f1": 0.7222026120720083, "accuracy": 0.9698268755152515}, "da_ddt": {"precision": 0.6054590570719603, "recall": 0.5458612975391499, "f1": 0.5741176470588235, "accuracy": 0.9691709069140976}, "en_ewt": {"precision": 0.5784518828451883, "recall": 0.5082720588235294, "f1": 0.541095890410959, "accuracy": 0.9587600111567119}, "pt_bosque": {"precision": 0.5818759936406995, "recall": 0.6024691358024692, "f1": 0.5919935301253538, "accuracy": 0.9642443124184901}, "sr_set": {"precision": 0.7712264150943396, "recall": 0.7721369539551358, "f1": 0.7716814159292036, "accuracy": 0.9685666754224674}, "sk_snk": {"precision": 0.38591117917304746, "recall": 0.2754098360655738, "f1": 0.32142857142857145, "accuracy": 0.9171639447236181}, "sv_talbanken": {"precision": 0.6923076923076923, "recall": 0.5969387755102041, "f1": 0.6410958904109589, "accuracy": 0.9936693330716003}}
 
1
+ {"ceb_gja": {"precision": 0.33, "recall": 0.673469387755102, "f1": 0.4429530201342282, "accuracy": 0.9351351351351351}, "en_pud": {"precision": 0.4882943143812709, "recall": 0.40744186046511627, "f1": 0.4442190669371196, "accuracy": 0.9479599546656592}, "de_pud": {"precision": 0.1302555647155812, "recall": 0.3041385948026949, "f1": 0.1823953823953824, "accuracy": 0.8445454971637523}, "pt_pud": {"precision": 0.5361904761904762, "recall": 0.5122838944494995, "f1": 0.5239646347138204, "accuracy": 0.9594992950826676}, "ru_pud": {"precision": 0.013888888888888888, "recall": 0.05115830115830116, "f1": 0.021846661170651278, "accuracy": 0.642056316197365}, "sv_pud": {"precision": 0.5278688524590164, "recall": 0.3129251700680272, "f1": 0.39292251372788284, "accuracy": 0.9450094359404487}, "tl_trg": {"precision": 0.2777777777777778, "recall": 0.6521739130434783, "f1": 0.3896103896103896, "accuracy": 0.9359673024523161}, "tl_ugnayan": {"precision": 0.047619047619047616, "recall": 0.12121212121212122, "f1": 0.06837606837606837, "accuracy": 0.8933454876937101}, "zh_gsd": {"precision": 0.4967741935483871, "recall": 0.5019556714471969, "f1": 0.49935149156939035, "accuracy": 0.9324841824841825}, "zh_gsdsimp": {"precision": 0.4718498659517426, "recall": 0.4613368283093054, "f1": 0.4665341285619616, "accuracy": 0.9306526806526807}, "hr_set": {"precision": 0.7073170731707317, "recall": 0.7234497505345688, "f1": 0.715292459478506, "accuracy": 0.9685490519373454}, "da_ddt": {"precision": 0.6351706036745407, "recall": 0.5413870246085011, "f1": 0.5845410628019323, "accuracy": 0.9699690711363863}, "en_ewt": {"precision": 0.6130434782608696, "recall": 0.5183823529411765, "f1": 0.5617529880478089, "accuracy": 0.9589990835558034}, "pt_bosque": {"precision": 0.5925925925925926, "recall": 0.5925925925925926, "f1": 0.5925925925925926, "accuracy": 0.9646428053905232}, "sr_set": {"precision": 0.7482678983833718, "recall": 0.7650531286894924, "f1": 0.7565674255691769, "accuracy": 0.9674284213291305}, "sk_snk": {"precision": 0.3918918918918919, "recall": 0.28524590163934427, "f1": 0.3301707779886148, "accuracy": 0.9173994974874372}, "sv_talbanken": {"precision": 0.7142857142857143, "recall": 0.5867346938775511, "f1": 0.6442577030812325, "accuracy": 0.9937184080090298}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:702a140ae762c04b37bfa06b42f86ed18a17e220f47c3564795723d74c220dd3
3
  size 939737140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c236dd5e2a7db48082ebb7f2a6b7f3e2dddf98cfce857da9f8d965bbc7d68bb
3
  size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc8c43f0581cc3bbaa517aef9805ba504edb9cb21af9adfb536de63055594940
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fc5178cc19ea9d376e41c1432469b7123ee10f631e6afb84b4d4421fc75a30f
3
  size 5304