File size: 11,349 Bytes
3bf9f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3534
- Precision: 0.6234
- Recall: 0.5829
- F1: 0.6024
- Accuracy: 0.9614

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3562        | 0.2910  | 500   | 0.2852          | 0.2966    | 0.1133 | 0.1639 | 0.9283   |
| 0.2364        | 0.5821  | 1000  | 0.2099          | 0.3403    | 0.2622 | 0.2961 | 0.9384   |
| 0.1729        | 0.8731  | 1500  | 0.1788          | 0.4217    | 0.3849 | 0.4025 | 0.9465   |
| 0.1341        | 1.1641  | 2000  | 0.1651          | 0.4680    | 0.4595 | 0.4637 | 0.9513   |
| 0.1123        | 1.4552  | 2500  | 0.1575          | 0.5014    | 0.4913 | 0.4963 | 0.9539   |
| 0.104         | 1.7462  | 3000  | 0.1514          | 0.5253    | 0.5071 | 0.5161 | 0.9559   |
| 0.0921        | 2.0373  | 3500  | 0.1484          | 0.5065    | 0.5485 | 0.5267 | 0.9561   |
| 0.0674        | 2.3283  | 4000  | 0.1515          | 0.5461    | 0.5643 | 0.5550 | 0.9584   |
| 0.0661        | 2.6193  | 4500  | 0.1523          | 0.5477    | 0.5588 | 0.5532 | 0.9589   |
| 0.0649        | 2.9104  | 5000  | 0.1511          | 0.5704    | 0.5721 | 0.5712 | 0.9600   |
| 0.0493        | 3.2014  | 5500  | 0.1632          | 0.5742    | 0.5666 | 0.5704 | 0.9601   |
| 0.0441        | 3.4924  | 6000  | 0.1626          | 0.5910    | 0.5748 | 0.5828 | 0.9605   |
| 0.0446        | 3.7835  | 6500  | 0.1678          | 0.6082    | 0.5561 | 0.5809 | 0.9611   |
| 0.0396        | 4.0745  | 7000  | 0.1740          | 0.5672    | 0.5738 | 0.5705 | 0.9601   |
| 0.0312        | 4.3655  | 7500  | 0.1776          | 0.5913    | 0.5713 | 0.5812 | 0.9605   |
| 0.0311        | 4.6566  | 8000  | 0.1723          | 0.5811    | 0.5944 | 0.5877 | 0.9601   |
| 0.0306        | 4.9476  | 8500  | 0.1793          | 0.5924    | 0.5807 | 0.5865 | 0.9608   |
| 0.0221        | 5.2386  | 9000  | 0.1898          | 0.5809    | 0.5931 | 0.5870 | 0.9605   |
| 0.0214        | 5.5297  | 9500  | 0.1910          | 0.5876    | 0.5827 | 0.5852 | 0.9602   |
| 0.0229        | 5.8207  | 10000 | 0.1947          | 0.5694    | 0.5934 | 0.5811 | 0.9596   |
| 0.0203        | 6.1118  | 10500 | 0.2044          | 0.6051    | 0.5732 | 0.5887 | 0.9608   |
| 0.015         | 6.4028  | 11000 | 0.2076          | 0.5915    | 0.5954 | 0.5935 | 0.9606   |
| 0.0157        | 6.6938  | 11500 | 0.2152          | 0.5937    | 0.5853 | 0.5895 | 0.9603   |
| 0.0166        | 6.9849  | 12000 | 0.2135          | 0.6049    | 0.5826 | 0.5935 | 0.9606   |
| 0.0115        | 7.2759  | 12500 | 0.2225          | 0.5847    | 0.5887 | 0.5867 | 0.9599   |
| 0.0119        | 7.5669  | 13000 | 0.2173          | 0.6006    | 0.5996 | 0.6001 | 0.9606   |
| 0.0124        | 7.8580  | 13500 | 0.2253          | 0.6116    | 0.5855 | 0.5983 | 0.9613   |
| 0.0099        | 8.1490  | 14000 | 0.2324          | 0.6004    | 0.5876 | 0.5939 | 0.9613   |
| 0.0081        | 8.4400  | 14500 | 0.2409          | 0.6121    | 0.5729 | 0.5918 | 0.9611   |
| 0.0097        | 8.7311  | 15000 | 0.2405          | 0.5896    | 0.5809 | 0.5852 | 0.9600   |
| 0.0088        | 9.0221  | 15500 | 0.2459          | 0.5980    | 0.5866 | 0.5923 | 0.9609   |
| 0.0065        | 9.3132  | 16000 | 0.2465          | 0.6075    | 0.5866 | 0.5969 | 0.9612   |
| 0.0069        | 9.6042  | 16500 | 0.2520          | 0.6127    | 0.5709 | 0.5911 | 0.9609   |
| 0.0073        | 9.8952  | 17000 | 0.2520          | 0.6088    | 0.5851 | 0.5967 | 0.9613   |
| 0.0062        | 10.1863 | 17500 | 0.2605          | 0.6225    | 0.5599 | 0.5895 | 0.9608   |
| 0.0047        | 10.4773 | 18000 | 0.2612          | 0.6002    | 0.5806 | 0.5902 | 0.9607   |
| 0.0054        | 10.7683 | 18500 | 0.2615          | 0.6137    | 0.5833 | 0.5981 | 0.9611   |
| 0.0053        | 11.0594 | 19000 | 0.2658          | 0.6199    | 0.5838 | 0.6013 | 0.9614   |
| 0.0045        | 11.3504 | 19500 | 0.2701          | 0.6195    | 0.5813 | 0.5998 | 0.9615   |
| 0.0047        | 11.6414 | 20000 | 0.2753          | 0.6101    | 0.5744 | 0.5917 | 0.9610   |
| 0.004         | 11.9325 | 20500 | 0.2671          | 0.6004    | 0.5898 | 0.5951 | 0.9605   |
| 0.004         | 12.2235 | 21000 | 0.2692          | 0.6134    | 0.5849 | 0.5988 | 0.9615   |
| 0.0035        | 12.5146 | 21500 | 0.2752          | 0.6215    | 0.5833 | 0.6018 | 0.9615   |
| 0.0038        | 12.8056 | 22000 | 0.2782          | 0.6198    | 0.5709 | 0.5944 | 0.9616   |
| 0.0032        | 13.0966 | 22500 | 0.2833          | 0.6040    | 0.5820 | 0.5928 | 0.9611   |
| 0.0029        | 13.3877 | 23000 | 0.2855          | 0.6122    | 0.5698 | 0.5902 | 0.9605   |
| 0.0029        | 13.6787 | 23500 | 0.2882          | 0.6066    | 0.5859 | 0.5961 | 0.9613   |
| 0.0031        | 13.9697 | 24000 | 0.2927          | 0.6072    | 0.5788 | 0.5927 | 0.9608   |
| 0.002         | 14.2608 | 24500 | 0.2950          | 0.6220    | 0.5739 | 0.5970 | 0.9613   |
| 0.0024        | 14.5518 | 25000 | 0.2941          | 0.6104    | 0.5830 | 0.5964 | 0.9612   |
| 0.0026        | 14.8428 | 25500 | 0.2932          | 0.6181    | 0.5865 | 0.6019 | 0.9617   |
| 0.002         | 15.1339 | 26000 | 0.3020          | 0.6059    | 0.5827 | 0.5941 | 0.9610   |
| 0.0019        | 15.4249 | 26500 | 0.3010          | 0.6254    | 0.5807 | 0.6022 | 0.9616   |
| 0.0024        | 15.7159 | 27000 | 0.3093          | 0.6379    | 0.5563 | 0.5943 | 0.9613   |
| 0.002         | 16.0070 | 27500 | 0.3038          | 0.5999    | 0.5953 | 0.5976 | 0.9611   |
| 0.0015        | 16.2980 | 28000 | 0.3101          | 0.6056    | 0.6014 | 0.6035 | 0.9616   |
| 0.0019        | 16.5891 | 28500 | 0.3110          | 0.6152    | 0.5742 | 0.5940 | 0.9610   |
| 0.0018        | 16.8801 | 29000 | 0.3143          | 0.6179    | 0.5842 | 0.6006 | 0.9612   |
| 0.0016        | 17.1711 | 29500 | 0.3179          | 0.6280    | 0.5799 | 0.6030 | 0.9614   |
| 0.0013        | 17.4622 | 30000 | 0.3202          | 0.6165    | 0.5778 | 0.5966 | 0.9615   |
| 0.0016        | 17.7532 | 30500 | 0.3185          | 0.6162    | 0.5879 | 0.6017 | 0.9614   |
| 0.0012        | 18.0442 | 31000 | 0.3236          | 0.6151    | 0.5784 | 0.5962 | 0.9614   |
| 0.0009        | 18.3353 | 31500 | 0.3210          | 0.6160    | 0.5920 | 0.6037 | 0.9616   |
| 0.0013        | 18.6263 | 32000 | 0.3265          | 0.6257    | 0.5750 | 0.5992 | 0.9613   |
| 0.0013        | 18.9173 | 32500 | 0.3219          | 0.6199    | 0.5778 | 0.5981 | 0.9612   |
| 0.0013        | 19.2084 | 33000 | 0.3215          | 0.6142    | 0.5839 | 0.5987 | 0.9614   |
| 0.0011        | 19.4994 | 33500 | 0.3180          | 0.6189    | 0.5891 | 0.6036 | 0.9616   |
| 0.0011        | 19.7905 | 34000 | 0.3217          | 0.6192    | 0.5879 | 0.6032 | 0.9615   |
| 0.0009        | 20.0815 | 34500 | 0.3240          | 0.6018    | 0.5979 | 0.5998 | 0.9612   |
| 0.0012        | 20.3725 | 35000 | 0.3250          | 0.6120    | 0.5904 | 0.6010 | 0.9611   |
| 0.001         | 20.6636 | 35500 | 0.3277          | 0.6196    | 0.5851 | 0.6018 | 0.9615   |
| 0.0009        | 20.9546 | 36000 | 0.3354          | 0.6251    | 0.5729 | 0.5979 | 0.9614   |
| 0.0008        | 21.2456 | 36500 | 0.3315          | 0.6177    | 0.5783 | 0.5973 | 0.9613   |
| 0.0008        | 21.5367 | 37000 | 0.3258          | 0.6185    | 0.5875 | 0.6026 | 0.9617   |
| 0.0008        | 21.8277 | 37500 | 0.3327          | 0.6236    | 0.5842 | 0.6032 | 0.9619   |
| 0.0008        | 22.1187 | 38000 | 0.3309          | 0.6071    | 0.6015 | 0.6043 | 0.9614   |
| 0.0006        | 22.4098 | 38500 | 0.3401          | 0.6302    | 0.5638 | 0.5952 | 0.9613   |
| 0.0006        | 22.7008 | 39000 | 0.3372          | 0.6285    | 0.5787 | 0.6026 | 0.9617   |
| 0.0008        | 22.9919 | 39500 | 0.3391          | 0.6189    | 0.5855 | 0.6017 | 0.9615   |
| 0.0007        | 23.2829 | 40000 | 0.3356          | 0.6190    | 0.5874 | 0.6028 | 0.9619   |
| 0.0005        | 23.5739 | 40500 | 0.3330          | 0.6222    | 0.5868 | 0.6040 | 0.9620   |
| 0.0009        | 23.8650 | 41000 | 0.3381          | 0.6156    | 0.5846 | 0.5997 | 0.9610   |
| 0.0004        | 24.1560 | 41500 | 0.3460          | 0.6298    | 0.5732 | 0.6002 | 0.9614   |
| 0.0005        | 24.4470 | 42000 | 0.3442          | 0.6215    | 0.5881 | 0.6043 | 0.9615   |
| 0.0006        | 24.7381 | 42500 | 0.3467          | 0.6240    | 0.5848 | 0.6038 | 0.9617   |
| 0.0005        | 25.0291 | 43000 | 0.3492          | 0.6307    | 0.5734 | 0.6007 | 0.9615   |
| 0.0006        | 25.3201 | 43500 | 0.3411          | 0.6287    | 0.5823 | 0.6046 | 0.9619   |
| 0.0003        | 25.6112 | 44000 | 0.3486          | 0.6342    | 0.5705 | 0.6006 | 0.9616   |
| 0.0004        | 25.9022 | 44500 | 0.3437          | 0.6257    | 0.5817 | 0.6029 | 0.9614   |
| 0.0005        | 26.1932 | 45000 | 0.3434          | 0.6152    | 0.5891 | 0.6019 | 0.9614   |
| 0.0003        | 26.4843 | 45500 | 0.3486          | 0.6239    | 0.5755 | 0.5987 | 0.9612   |
| 0.0005        | 26.7753 | 46000 | 0.3492          | 0.6083    | 0.5869 | 0.5974 | 0.9613   |
| 0.0004        | 27.0664 | 46500 | 0.3531          | 0.6198    | 0.5767 | 0.5975 | 0.9612   |
| 0.0003        | 27.3574 | 47000 | 0.3489          | 0.6178    | 0.5874 | 0.6022 | 0.9613   |
| 0.0004        | 27.6484 | 47500 | 0.3489          | 0.6184    | 0.5839 | 0.6007 | 0.9612   |
| 0.0003        | 27.9395 | 48000 | 0.3517          | 0.6191    | 0.5813 | 0.5996 | 0.9613   |
| 0.0003        | 28.2305 | 48500 | 0.3523          | 0.6227    | 0.5806 | 0.6009 | 0.9614   |
| 0.0002        | 28.5215 | 49000 | 0.3530          | 0.6225    | 0.5852 | 0.6033 | 0.9615   |
| 0.0003        | 28.8126 | 49500 | 0.3528          | 0.6234    | 0.5820 | 0.6020 | 0.9614   |
| 0.0003        | 29.1036 | 50000 | 0.3531          | 0.6205    | 0.5830 | 0.6012 | 0.9613   |
| 0.0004        | 29.3946 | 50500 | 0.3521          | 0.6202    | 0.5875 | 0.6034 | 0.9614   |
| 0.0003        | 29.6857 | 51000 | 0.3532          | 0.6219    | 0.5836 | 0.6022 | 0.9613   |
| 0.0003        | 29.9767 | 51500 | 0.3534          | 0.6234    | 0.5829 | 0.6024 | 0.9614   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1