File size: 6,979 Bytes
3bf9f02
5c381bd
3bf9f02
 
 
 
 
 
 
5c381bd
 
3bf9f02
 
 
 
 
 
 
 
 
 
 
 
a144e61
 
 
 
 
3bf9f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a144e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf9f02
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3028
- Precision: 0.6277
- Recall: 0.5869
- F1: 0.6066
- Accuracy: 0.9615

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.36          | 0.2910  | 500   | 0.2872          | 0.2875    | 0.1173 | 0.1666 | 0.9284   |
| 0.2389        | 0.5821  | 1000  | 0.2086          | 0.3476    | 0.2561 | 0.2949 | 0.9388   |
| 0.1727        | 0.8731  | 1500  | 0.1810          | 0.4363    | 0.3748 | 0.4033 | 0.9465   |
| 0.1338        | 1.1641  | 2000  | 0.1644          | 0.4626    | 0.4675 | 0.4650 | 0.9514   |
| 0.1122        | 1.4552  | 2500  | 0.1560          | 0.4983    | 0.5063 | 0.5023 | 0.9538   |
| 0.1033        | 1.7462  | 3000  | 0.1504          | 0.5354    | 0.5128 | 0.5238 | 0.9564   |
| 0.0919        | 2.0373  | 3500  | 0.1475          | 0.5073    | 0.5452 | 0.5256 | 0.9558   |
| 0.0665        | 2.3283  | 4000  | 0.1547          | 0.5536    | 0.5578 | 0.5557 | 0.9583   |
| 0.066         | 2.6193  | 4500  | 0.1513          | 0.5345    | 0.5760 | 0.5545 | 0.9581   |
| 0.0642        | 2.9104  | 5000  | 0.1489          | 0.5750    | 0.5683 | 0.5716 | 0.9605   |
| 0.0495        | 3.2014  | 5500  | 0.1597          | 0.5769    | 0.5711 | 0.5740 | 0.9600   |
| 0.0437        | 3.4924  | 6000  | 0.1643          | 0.5848    | 0.5680 | 0.5763 | 0.9603   |
| 0.0444        | 3.7835  | 6500  | 0.1615          | 0.5884    | 0.5898 | 0.5891 | 0.9607   |
| 0.0409        | 4.0745  | 7000  | 0.1723          | 0.5869    | 0.5761 | 0.5815 | 0.9606   |
| 0.0313        | 4.3655  | 7500  | 0.1740          | 0.5871    | 0.5930 | 0.5900 | 0.9606   |
| 0.032         | 4.6566  | 8000  | 0.1682          | 0.5911    | 0.6031 | 0.5971 | 0.9611   |
| 0.0304        | 4.9476  | 8500  | 0.1771          | 0.6070    | 0.5783 | 0.5923 | 0.9613   |
| 0.0228        | 5.2386  | 9000  | 0.1843          | 0.5817    | 0.6045 | 0.5929 | 0.9608   |
| 0.0216        | 5.5297  | 9500  | 0.1841          | 0.5938    | 0.6142 | 0.6038 | 0.9609   |
| 0.0232        | 5.8207  | 10000 | 0.1957          | 0.5816    | 0.5998 | 0.5906 | 0.9600   |
| 0.0201        | 6.1118  | 10500 | 0.1982          | 0.6049    | 0.5963 | 0.6006 | 0.9611   |
| 0.0153        | 6.4028  | 11000 | 0.2040          | 0.5919    | 0.6057 | 0.5987 | 0.9602   |
| 0.0165        | 6.6938  | 11500 | 0.2039          | 0.6000    | 0.5988 | 0.5994 | 0.9609   |
| 0.0165        | 6.9849  | 12000 | 0.2076          | 0.5963    | 0.5913 | 0.5938 | 0.9606   |
| 0.0121        | 7.2759  | 12500 | 0.2178          | 0.6015    | 0.5833 | 0.5923 | 0.9604   |
| 0.012         | 7.5669  | 13000 | 0.2186          | 0.6206    | 0.5902 | 0.6050 | 0.9613   |
| 0.0126        | 7.8580  | 13500 | 0.2218          | 0.5882    | 0.6191 | 0.6033 | 0.9600   |
| 0.0098        | 8.1490  | 14000 | 0.2296          | 0.6164    | 0.5911 | 0.6035 | 0.9617   |
| 0.0091        | 8.4400  | 14500 | 0.2332          | 0.5986    | 0.5976 | 0.5981 | 0.9607   |
| 0.0097        | 8.7311  | 15000 | 0.2322          | 0.6053    | 0.5996 | 0.6024 | 0.9613   |
| 0.0089        | 9.0221  | 15500 | 0.2355          | 0.6174    | 0.6034 | 0.6103 | 0.9612   |
| 0.0064        | 9.3132  | 16000 | 0.2440          | 0.6306    | 0.5835 | 0.6061 | 0.9614   |
| 0.0071        | 9.6042  | 16500 | 0.2451          | 0.6220    | 0.5761 | 0.5982 | 0.9609   |
| 0.0073        | 9.8952  | 17000 | 0.2461          | 0.6203    | 0.5990 | 0.6095 | 0.9616   |
| 0.0064        | 10.1863 | 17500 | 0.2506          | 0.6213    | 0.5900 | 0.6052 | 0.9615   |
| 0.005         | 10.4773 | 18000 | 0.2547          | 0.6226    | 0.5970 | 0.6096 | 0.9617   |
| 0.0058        | 10.7683 | 18500 | 0.2553          | 0.6374    | 0.5897 | 0.6126 | 0.9620   |
| 0.0054        | 11.0594 | 19000 | 0.2624          | 0.6232    | 0.5840 | 0.6030 | 0.9617   |
| 0.0044        | 11.3504 | 19500 | 0.2655          | 0.6262    | 0.5946 | 0.6100 | 0.9620   |
| 0.0048        | 11.6414 | 20000 | 0.2654          | 0.6154    | 0.5989 | 0.6070 | 0.9616   |
| 0.0042        | 11.9325 | 20500 | 0.2724          | 0.6306    | 0.5806 | 0.6046 | 0.9616   |
| 0.004         | 12.2235 | 21000 | 0.2707          | 0.6052    | 0.5920 | 0.5985 | 0.9607   |
| 0.0035        | 12.5146 | 21500 | 0.2714          | 0.5962    | 0.5986 | 0.5974 | 0.9607   |
| 0.0041        | 12.8056 | 22000 | 0.2755          | 0.6263    | 0.5858 | 0.6053 | 0.9616   |
| 0.0035        | 13.0966 | 22500 | 0.2842          | 0.6350    | 0.5814 | 0.6071 | 0.9614   |
| 0.0033        | 13.3877 | 23000 | 0.2763          | 0.6317    | 0.5868 | 0.6084 | 0.9614   |
| 0.0028        | 13.6787 | 23500 | 0.2831          | 0.6141    | 0.5976 | 0.6057 | 0.9616   |
| 0.0031        | 13.9697 | 24000 | 0.2797          | 0.6141    | 0.6064 | 0.6102 | 0.9614   |
| 0.0024        | 14.2608 | 24500 | 0.2873          | 0.5980    | 0.6038 | 0.6009 | 0.9611   |
| 0.0025        | 14.5518 | 25000 | 0.2913          | 0.6055    | 0.5980 | 0.6017 | 0.9612   |
| 0.003         | 14.8428 | 25500 | 0.2885          | 0.6208    | 0.5843 | 0.6020 | 0.9615   |
| 0.0023        | 15.1339 | 26000 | 0.2923          | 0.6255    | 0.5849 | 0.6045 | 0.9618   |
| 0.0019        | 15.4249 | 26500 | 0.2875          | 0.6221    | 0.6015 | 0.6116 | 0.9619   |
| 0.0027        | 15.7159 | 27000 | 0.2898          | 0.6241    | 0.5967 | 0.6101 | 0.9619   |
| 0.0024        | 16.0070 | 27500 | 0.2943          | 0.6146    | 0.5895 | 0.6018 | 0.9612   |
| 0.0016        | 16.2980 | 28000 | 0.2996          | 0.6199    | 0.5928 | 0.6060 | 0.9614   |
| 0.0022        | 16.5891 | 28500 | 0.3028          | 0.6277    | 0.5869 | 0.6066 | 0.9615   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1