haryoaw commited on
Commit
f3efd03
1 Parent(s): 92dd696

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +111 -111
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: FacebookAI/xlm-roberta-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-half-xlmr_data-univner_full66
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3550
25
- - Precision: 0.5273
26
- - Recall: 0.5387
27
- - F1: 0.5330
28
- - Accuracy: 0.9558
29
 
30
  ## Model description
31
 
@@ -56,109 +56,109 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.3559 | 0.2910 | 500 | 0.2896 | 0.3475 | 0.1278 | 0.1869 | 0.9282 |
60
- | 0.2758 | 0.5821 | 1000 | 0.2691 | 0.3710 | 0.1401 | 0.2034 | 0.9312 |
61
- | 0.2456 | 0.8731 | 1500 | 0.2354 | 0.3249 | 0.2121 | 0.2566 | 0.9346 |
62
- | 0.2226 | 1.1641 | 2000 | 0.2371 | 0.3530 | 0.2360 | 0.2829 | 0.9371 |
63
- | 0.2052 | 1.4552 | 2500 | 0.2213 | 0.3597 | 0.2646 | 0.3049 | 0.9389 |
64
- | 0.1968 | 1.7462 | 3000 | 0.2128 | 0.3608 | 0.2940 | 0.3240 | 0.9399 |
65
- | 0.1838 | 2.0373 | 3500 | 0.2153 | 0.3834 | 0.3239 | 0.3511 | 0.9411 |
66
- | 0.1657 | 2.3283 | 4000 | 0.2132 | 0.3730 | 0.3331 | 0.3519 | 0.9398 |
67
- | 0.1641 | 2.6193 | 4500 | 0.2100 | 0.3589 | 0.3474 | 0.3531 | 0.9400 |
68
- | 0.1642 | 2.9104 | 5000 | 0.1984 | 0.3786 | 0.3705 | 0.3745 | 0.9421 |
69
- | 0.144 | 3.2014 | 5500 | 0.2034 | 0.3900 | 0.4116 | 0.4005 | 0.9413 |
70
- | 0.1417 | 3.4924 | 6000 | 0.2010 | 0.4281 | 0.3844 | 0.4050 | 0.9442 |
71
- | 0.1358 | 3.7835 | 6500 | 0.2110 | 0.4175 | 0.3556 | 0.3841 | 0.9445 |
72
- | 0.1361 | 4.0745 | 7000 | 0.2037 | 0.4182 | 0.4066 | 0.4123 | 0.9436 |
73
- | 0.1199 | 4.3655 | 7500 | 0.2082 | 0.4252 | 0.3939 | 0.4090 | 0.9448 |
74
- | 0.1233 | 4.6566 | 8000 | 0.2038 | 0.4254 | 0.3976 | 0.4111 | 0.9451 |
75
- | 0.1229 | 4.9476 | 8500 | 0.2008 | 0.4425 | 0.4080 | 0.4246 | 0.9461 |
76
- | 0.1081 | 5.2386 | 9000 | 0.2128 | 0.4407 | 0.4080 | 0.4237 | 0.9467 |
77
- | 0.1045 | 5.5297 | 9500 | 0.2019 | 0.4492 | 0.4155 | 0.4317 | 0.9475 |
78
- | 0.1 | 5.8207 | 10000 | 0.1943 | 0.4288 | 0.4702 | 0.4486 | 0.9448 |
79
- | 0.0942 | 6.1118 | 10500 | 0.2039 | 0.4454 | 0.4354 | 0.4404 | 0.9475 |
80
- | 0.0853 | 6.4028 | 11000 | 0.2020 | 0.4380 | 0.4727 | 0.4547 | 0.9477 |
81
- | 0.0826 | 6.6938 | 11500 | 0.2041 | 0.4565 | 0.4748 | 0.4655 | 0.9491 |
82
- | 0.085 | 6.9849 | 12000 | 0.1987 | 0.4671 | 0.4623 | 0.4647 | 0.9494 |
83
- | 0.0691 | 7.2759 | 12500 | 0.2208 | 0.4739 | 0.4445 | 0.4588 | 0.9506 |
84
- | 0.0677 | 7.5669 | 13000 | 0.2065 | 0.4851 | 0.4634 | 0.4740 | 0.9509 |
85
- | 0.0688 | 7.8580 | 13500 | 0.2030 | 0.4733 | 0.4927 | 0.4828 | 0.9512 |
86
- | 0.0632 | 8.1490 | 14000 | 0.2123 | 0.4889 | 0.4784 | 0.4836 | 0.9521 |
87
- | 0.0551 | 8.4400 | 14500 | 0.2165 | 0.4778 | 0.4711 | 0.4744 | 0.9513 |
88
- | 0.0555 | 8.7311 | 15000 | 0.2200 | 0.4869 | 0.4835 | 0.4852 | 0.9523 |
89
- | 0.0569 | 9.0221 | 15500 | 0.2170 | 0.4820 | 0.5070 | 0.4942 | 0.9520 |
90
- | 0.0472 | 9.3132 | 16000 | 0.2239 | 0.4987 | 0.4878 | 0.4932 | 0.9525 |
91
- | 0.0466 | 9.6042 | 16500 | 0.2264 | 0.4798 | 0.5224 | 0.5002 | 0.9528 |
92
- | 0.0471 | 9.8952 | 17000 | 0.2238 | 0.5028 | 0.4875 | 0.4950 | 0.9531 |
93
- | 0.0404 | 10.1863 | 17500 | 0.2365 | 0.4999 | 0.4946 | 0.4972 | 0.9530 |
94
- | 0.039 | 10.4773 | 18000 | 0.2369 | 0.4957 | 0.5158 | 0.5056 | 0.9540 |
95
- | 0.039 | 10.7683 | 18500 | 0.2376 | 0.5019 | 0.5024 | 0.5021 | 0.9534 |
96
- | 0.0388 | 11.0594 | 19000 | 0.2451 | 0.4869 | 0.5019 | 0.4943 | 0.9525 |
97
- | 0.0339 | 11.3504 | 19500 | 0.2439 | 0.4811 | 0.5116 | 0.4959 | 0.9527 |
98
- | 0.033 | 11.6414 | 20000 | 0.2421 | 0.5027 | 0.5168 | 0.5097 | 0.9538 |
99
- | 0.0322 | 11.9325 | 20500 | 0.2497 | 0.5034 | 0.5083 | 0.5058 | 0.9541 |
100
- | 0.0289 | 12.2235 | 21000 | 0.2465 | 0.5103 | 0.5164 | 0.5133 | 0.9541 |
101
- | 0.0278 | 12.5146 | 21500 | 0.2586 | 0.5037 | 0.5139 | 0.5087 | 0.9538 |
102
- | 0.0276 | 12.8056 | 22000 | 0.2624 | 0.5043 | 0.5092 | 0.5067 | 0.9538 |
103
- | 0.026 | 13.0966 | 22500 | 0.2571 | 0.5038 | 0.5268 | 0.5150 | 0.9536 |
104
- | 0.0224 | 13.3877 | 23000 | 0.2612 | 0.5091 | 0.5252 | 0.5170 | 0.9544 |
105
- | 0.0241 | 13.6787 | 23500 | 0.2644 | 0.5091 | 0.5271 | 0.5179 | 0.9539 |
106
- | 0.0241 | 13.9697 | 24000 | 0.2689 | 0.5271 | 0.5144 | 0.5206 | 0.9550 |
107
- | 0.0204 | 14.2608 | 24500 | 0.2691 | 0.5031 | 0.5220 | 0.5124 | 0.9539 |
108
- | 0.0195 | 14.5518 | 25000 | 0.2733 | 0.5152 | 0.5245 | 0.5198 | 0.9550 |
109
- | 0.0202 | 14.8428 | 25500 | 0.2770 | 0.5074 | 0.5322 | 0.5195 | 0.9541 |
110
- | 0.0195 | 15.1339 | 26000 | 0.2807 | 0.5298 | 0.5239 | 0.5268 | 0.9552 |
111
- | 0.0177 | 15.4249 | 26500 | 0.2830 | 0.5245 | 0.5317 | 0.5281 | 0.9554 |
112
- | 0.0174 | 15.7159 | 27000 | 0.2818 | 0.5210 | 0.5380 | 0.5294 | 0.9551 |
113
- | 0.0167 | 16.0070 | 27500 | 0.2853 | 0.5158 | 0.5359 | 0.5257 | 0.9546 |
114
- | 0.0141 | 16.2980 | 28000 | 0.2876 | 0.5198 | 0.5273 | 0.5235 | 0.9552 |
115
- | 0.0152 | 16.5891 | 28500 | 0.2932 | 0.5255 | 0.5126 | 0.5190 | 0.9547 |
116
- | 0.017 | 16.8801 | 29000 | 0.2844 | 0.5095 | 0.5425 | 0.5255 | 0.9550 |
117
- | 0.0131 | 17.1711 | 29500 | 0.2994 | 0.5292 | 0.5260 | 0.5276 | 0.9556 |
118
- | 0.0142 | 17.4622 | 30000 | 0.2999 | 0.5117 | 0.5423 | 0.5266 | 0.9549 |
119
- | 0.0132 | 17.7532 | 30500 | 0.2927 | 0.5163 | 0.5377 | 0.5268 | 0.9547 |
120
- | 0.0125 | 18.0442 | 31000 | 0.2990 | 0.5203 | 0.5410 | 0.5305 | 0.9550 |
121
- | 0.0116 | 18.3353 | 31500 | 0.3038 | 0.5255 | 0.5354 | 0.5304 | 0.9555 |
122
- | 0.0121 | 18.6263 | 32000 | 0.3078 | 0.5302 | 0.5113 | 0.5206 | 0.9552 |
123
- | 0.012 | 18.9173 | 32500 | 0.3043 | 0.5185 | 0.5299 | 0.5242 | 0.9551 |
124
- | 0.0101 | 19.2084 | 33000 | 0.3155 | 0.5250 | 0.5255 | 0.5252 | 0.9552 |
125
- | 0.0108 | 19.4994 | 33500 | 0.3173 | 0.5254 | 0.5198 | 0.5226 | 0.9551 |
126
- | 0.0107 | 19.7905 | 34000 | 0.3154 | 0.5249 | 0.5285 | 0.5267 | 0.9555 |
127
- | 0.0102 | 20.0815 | 34500 | 0.3182 | 0.5203 | 0.5409 | 0.5304 | 0.9550 |
128
- | 0.0091 | 20.3725 | 35000 | 0.3212 | 0.5270 | 0.5346 | 0.5308 | 0.9556 |
129
- | 0.009 | 20.6636 | 35500 | 0.3235 | 0.5194 | 0.5454 | 0.5321 | 0.9550 |
130
- | 0.009 | 20.9546 | 36000 | 0.3222 | 0.5262 | 0.5372 | 0.5316 | 0.9555 |
131
- | 0.0088 | 21.2456 | 36500 | 0.3229 | 0.5275 | 0.5331 | 0.5303 | 0.9555 |
132
- | 0.0078 | 21.5367 | 37000 | 0.3247 | 0.5248 | 0.5364 | 0.5305 | 0.9556 |
133
- | 0.0087 | 21.8277 | 37500 | 0.3280 | 0.5227 | 0.5356 | 0.5290 | 0.9555 |
134
- | 0.0076 | 22.1187 | 38000 | 0.3318 | 0.5299 | 0.5305 | 0.5302 | 0.9559 |
135
- | 0.0064 | 22.4098 | 38500 | 0.3329 | 0.5302 | 0.5324 | 0.5313 | 0.9557 |
136
- | 0.008 | 22.7008 | 39000 | 0.3340 | 0.5313 | 0.5343 | 0.5328 | 0.9557 |
137
- | 0.0081 | 22.9919 | 39500 | 0.3304 | 0.5220 | 0.5386 | 0.5301 | 0.9552 |
138
- | 0.007 | 23.2829 | 40000 | 0.3322 | 0.5234 | 0.5408 | 0.5319 | 0.9556 |
139
- | 0.0062 | 23.5739 | 40500 | 0.3305 | 0.5199 | 0.5447 | 0.5320 | 0.9553 |
140
- | 0.0065 | 23.8650 | 41000 | 0.3394 | 0.5263 | 0.5234 | 0.5249 | 0.9552 |
141
- | 0.0069 | 24.1560 | 41500 | 0.3392 | 0.5240 | 0.5377 | 0.5308 | 0.9555 |
142
- | 0.0055 | 24.4470 | 42000 | 0.3362 | 0.5250 | 0.5387 | 0.5318 | 0.9555 |
143
- | 0.0061 | 24.7381 | 42500 | 0.3467 | 0.5199 | 0.5382 | 0.5289 | 0.9553 |
144
- | 0.0066 | 25.0291 | 43000 | 0.3416 | 0.5071 | 0.5496 | 0.5275 | 0.9552 |
145
- | 0.0051 | 25.3201 | 43500 | 0.3436 | 0.5270 | 0.5386 | 0.5328 | 0.9557 |
146
- | 0.0057 | 25.6112 | 44000 | 0.3427 | 0.5312 | 0.5372 | 0.5341 | 0.9559 |
147
- | 0.0062 | 25.9022 | 44500 | 0.3467 | 0.5314 | 0.5402 | 0.5358 | 0.9560 |
148
- | 0.0051 | 26.1932 | 45000 | 0.3471 | 0.5341 | 0.5379 | 0.5360 | 0.9558 |
149
- | 0.0055 | 26.4843 | 45500 | 0.3454 | 0.5312 | 0.5385 | 0.5348 | 0.9559 |
150
- | 0.0051 | 26.7753 | 46000 | 0.3503 | 0.5261 | 0.5338 | 0.5299 | 0.9557 |
151
- | 0.0058 | 27.0664 | 46500 | 0.3506 | 0.5310 | 0.5399 | 0.5354 | 0.9561 |
152
- | 0.0048 | 27.3574 | 47000 | 0.3542 | 0.5322 | 0.5314 | 0.5318 | 0.9560 |
153
- | 0.0046 | 27.6484 | 47500 | 0.3519 | 0.5237 | 0.5385 | 0.5310 | 0.9557 |
154
- | 0.0049 | 27.9395 | 48000 | 0.3490 | 0.5174 | 0.5455 | 0.5311 | 0.9552 |
155
- | 0.0045 | 28.2305 | 48500 | 0.3530 | 0.5269 | 0.5409 | 0.5338 | 0.9558 |
156
- | 0.0049 | 28.5215 | 49000 | 0.3554 | 0.5331 | 0.5324 | 0.5327 | 0.9559 |
157
- | 0.005 | 28.8126 | 49500 | 0.3547 | 0.5336 | 0.5344 | 0.5340 | 0.9560 |
158
- | 0.0042 | 29.1036 | 50000 | 0.3554 | 0.5278 | 0.5390 | 0.5333 | 0.9559 |
159
- | 0.0043 | 29.3946 | 50500 | 0.3545 | 0.5238 | 0.5402 | 0.5319 | 0.9557 |
160
- | 0.0046 | 29.6857 | 51000 | 0.3559 | 0.5288 | 0.5344 | 0.5316 | 0.9558 |
161
- | 0.0042 | 29.9767 | 51500 | 0.3550 | 0.5273 | 0.5387 | 0.5330 | 0.9558 |
162
 
163
 
164
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: FacebookAI/xlm-roberta-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-half-xlmr_data-univner_full66
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3518
25
+ - Precision: 0.5316
26
+ - Recall: 0.5425
27
+ - F1: 0.5370
28
+ - Accuracy: 0.9565
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.3589 | 0.2910 | 500 | 0.2912 | 0.4556 | 0.0998 | 0.1638 | 0.9285 |
60
+ | 0.2772 | 0.5821 | 1000 | 0.2813 | 0.4297 | 0.1296 | 0.1991 | 0.9314 |
61
+ | 0.2452 | 0.8731 | 1500 | 0.2362 | 0.3233 | 0.2021 | 0.2487 | 0.9349 |
62
+ | 0.2225 | 1.1641 | 2000 | 0.2304 | 0.3518 | 0.2447 | 0.2886 | 0.9377 |
63
+ | 0.2028 | 1.4552 | 2500 | 0.2316 | 0.3541 | 0.2378 | 0.2845 | 0.9385 |
64
+ | 0.1966 | 1.7462 | 3000 | 0.2155 | 0.3847 | 0.2730 | 0.3194 | 0.9401 |
65
+ | 0.1841 | 2.0373 | 3500 | 0.2109 | 0.3783 | 0.3202 | 0.3468 | 0.9408 |
66
+ | 0.1651 | 2.3283 | 4000 | 0.2105 | 0.3801 | 0.3388 | 0.3582 | 0.9404 |
67
+ | 0.1644 | 2.6193 | 4500 | 0.2056 | 0.3732 | 0.3506 | 0.3616 | 0.9417 |
68
+ | 0.1635 | 2.9104 | 5000 | 0.1966 | 0.3919 | 0.3705 | 0.3809 | 0.9429 |
69
+ | 0.1441 | 3.2014 | 5500 | 0.2022 | 0.4122 | 0.3985 | 0.4052 | 0.9432 |
70
+ | 0.1418 | 3.4924 | 6000 | 0.2040 | 0.4160 | 0.3760 | 0.3950 | 0.9443 |
71
+ | 0.1363 | 3.7835 | 6500 | 0.2053 | 0.4157 | 0.3682 | 0.3905 | 0.9446 |
72
+ | 0.1367 | 4.0745 | 7000 | 0.2032 | 0.4182 | 0.3929 | 0.4051 | 0.9448 |
73
+ | 0.1203 | 4.3655 | 7500 | 0.2053 | 0.4173 | 0.4007 | 0.4088 | 0.9448 |
74
+ | 0.1222 | 4.6566 | 8000 | 0.2040 | 0.4337 | 0.3936 | 0.4127 | 0.9459 |
75
+ | 0.1215 | 4.9476 | 8500 | 0.1982 | 0.4271 | 0.4227 | 0.4249 | 0.9455 |
76
+ | 0.1072 | 5.2386 | 9000 | 0.2090 | 0.4375 | 0.4162 | 0.4266 | 0.9470 |
77
+ | 0.1035 | 5.5297 | 9500 | 0.2049 | 0.4449 | 0.4233 | 0.4338 | 0.9477 |
78
+ | 0.0988 | 5.8207 | 10000 | 0.1970 | 0.4446 | 0.4558 | 0.4501 | 0.9469 |
79
+ | 0.0935 | 6.1118 | 10500 | 0.2087 | 0.4576 | 0.4489 | 0.4532 | 0.9485 |
80
+ | 0.0847 | 6.4028 | 11000 | 0.2098 | 0.4410 | 0.4639 | 0.4521 | 0.9487 |
81
+ | 0.0811 | 6.6938 | 11500 | 0.2072 | 0.4662 | 0.4699 | 0.4680 | 0.9506 |
82
+ | 0.0828 | 6.9849 | 12000 | 0.1986 | 0.4947 | 0.4657 | 0.4798 | 0.9510 |
83
+ | 0.0681 | 7.2759 | 12500 | 0.2098 | 0.4742 | 0.4797 | 0.4769 | 0.9515 |
84
+ | 0.0664 | 7.5669 | 13000 | 0.2018 | 0.4830 | 0.4887 | 0.4858 | 0.9511 |
85
+ | 0.0674 | 7.8580 | 13500 | 0.2066 | 0.4954 | 0.5084 | 0.5018 | 0.9532 |
86
+ | 0.0621 | 8.1490 | 14000 | 0.2088 | 0.4737 | 0.5086 | 0.4905 | 0.9513 |
87
+ | 0.0532 | 8.4400 | 14500 | 0.2197 | 0.4995 | 0.4777 | 0.4883 | 0.9528 |
88
+ | 0.0544 | 8.7311 | 15000 | 0.2195 | 0.5120 | 0.4793 | 0.4951 | 0.9528 |
89
+ | 0.0558 | 9.0221 | 15500 | 0.2174 | 0.4953 | 0.5044 | 0.4998 | 0.9533 |
90
+ | 0.0454 | 9.3132 | 16000 | 0.2241 | 0.5061 | 0.5095 | 0.5078 | 0.9536 |
91
+ | 0.0458 | 9.6042 | 16500 | 0.2215 | 0.5058 | 0.5227 | 0.5141 | 0.9540 |
92
+ | 0.0451 | 9.8952 | 17000 | 0.2181 | 0.4940 | 0.5200 | 0.5066 | 0.9525 |
93
+ | 0.0399 | 10.1863 | 17500 | 0.2318 | 0.5085 | 0.5194 | 0.5139 | 0.9538 |
94
+ | 0.0375 | 10.4773 | 18000 | 0.2378 | 0.5108 | 0.5240 | 0.5173 | 0.9541 |
95
+ | 0.0378 | 10.7683 | 18500 | 0.2312 | 0.5118 | 0.5255 | 0.5185 | 0.9543 |
96
+ | 0.0376 | 11.0594 | 19000 | 0.2445 | 0.5006 | 0.5074 | 0.5040 | 0.9540 |
97
+ | 0.0338 | 11.3504 | 19500 | 0.2455 | 0.5081 | 0.5120 | 0.5101 | 0.9543 |
98
+ | 0.0326 | 11.6414 | 20000 | 0.2442 | 0.5108 | 0.5321 | 0.5212 | 0.9546 |
99
+ | 0.0318 | 11.9325 | 20500 | 0.2495 | 0.5168 | 0.5171 | 0.5169 | 0.9550 |
100
+ | 0.0289 | 12.2235 | 21000 | 0.2487 | 0.5113 | 0.5350 | 0.5229 | 0.9550 |
101
+ | 0.0278 | 12.5146 | 21500 | 0.2522 | 0.5050 | 0.5263 | 0.5154 | 0.9543 |
102
+ | 0.0277 | 12.8056 | 22000 | 0.2608 | 0.5221 | 0.5138 | 0.5179 | 0.9548 |
103
+ | 0.0263 | 13.0966 | 22500 | 0.2561 | 0.5133 | 0.5269 | 0.5200 | 0.9551 |
104
+ | 0.024 | 13.3877 | 23000 | 0.2631 | 0.5196 | 0.5258 | 0.5227 | 0.9547 |
105
+ | 0.0246 | 13.6787 | 23500 | 0.2628 | 0.5110 | 0.5527 | 0.5311 | 0.9551 |
106
+ | 0.0241 | 13.9697 | 24000 | 0.2735 | 0.5161 | 0.5260 | 0.5210 | 0.9552 |
107
+ | 0.021 | 14.2608 | 24500 | 0.2737 | 0.5224 | 0.5256 | 0.5240 | 0.9551 |
108
+ | 0.0201 | 14.5518 | 25000 | 0.2743 | 0.5246 | 0.5360 | 0.5302 | 0.9554 |
109
+ | 0.0208 | 14.8428 | 25500 | 0.2776 | 0.5180 | 0.5266 | 0.5222 | 0.9552 |
110
+ | 0.0201 | 15.1339 | 26000 | 0.2801 | 0.5065 | 0.5370 | 0.5213 | 0.9549 |
111
+ | 0.018 | 15.4249 | 26500 | 0.2770 | 0.5168 | 0.5335 | 0.5250 | 0.9550 |
112
+ | 0.0176 | 15.7159 | 27000 | 0.2875 | 0.5185 | 0.5324 | 0.5253 | 0.9551 |
113
+ | 0.0177 | 16.0070 | 27500 | 0.2861 | 0.5267 | 0.5321 | 0.5294 | 0.9556 |
114
+ | 0.0148 | 16.2980 | 28000 | 0.2860 | 0.5079 | 0.5442 | 0.5254 | 0.9549 |
115
+ | 0.0156 | 16.5891 | 28500 | 0.2953 | 0.5188 | 0.5380 | 0.5282 | 0.9552 |
116
+ | 0.0165 | 16.8801 | 29000 | 0.2928 | 0.5261 | 0.5333 | 0.5297 | 0.9557 |
117
+ | 0.0135 | 17.1711 | 29500 | 0.2981 | 0.5171 | 0.5396 | 0.5281 | 0.9554 |
118
+ | 0.0142 | 17.4622 | 30000 | 0.3062 | 0.5269 | 0.5164 | 0.5216 | 0.9554 |
119
+ | 0.0134 | 17.7532 | 30500 | 0.2947 | 0.5211 | 0.5418 | 0.5312 | 0.9555 |
120
+ | 0.0134 | 18.0442 | 31000 | 0.3045 | 0.5188 | 0.5426 | 0.5305 | 0.9559 |
121
+ | 0.012 | 18.3353 | 31500 | 0.3070 | 0.5236 | 0.5380 | 0.5307 | 0.9558 |
122
+ | 0.0123 | 18.6263 | 32000 | 0.3071 | 0.5409 | 0.5328 | 0.5368 | 0.9567 |
123
+ | 0.0117 | 18.9173 | 32500 | 0.3094 | 0.5265 | 0.5357 | 0.5311 | 0.9560 |
124
+ | 0.0108 | 19.2084 | 33000 | 0.3167 | 0.5344 | 0.5305 | 0.5325 | 0.9565 |
125
+ | 0.0111 | 19.4994 | 33500 | 0.3162 | 0.5182 | 0.5302 | 0.5241 | 0.9556 |
126
+ | 0.011 | 19.7905 | 34000 | 0.3152 | 0.5243 | 0.5377 | 0.5309 | 0.9557 |
127
+ | 0.0106 | 20.0815 | 34500 | 0.3241 | 0.5354 | 0.5200 | 0.5276 | 0.9562 |
128
+ | 0.0094 | 20.3725 | 35000 | 0.3240 | 0.5223 | 0.5288 | 0.5255 | 0.9560 |
129
+ | 0.0094 | 20.6636 | 35500 | 0.3271 | 0.5293 | 0.5322 | 0.5308 | 0.9563 |
130
+ | 0.0099 | 20.9546 | 36000 | 0.3219 | 0.5256 | 0.5334 | 0.5295 | 0.9559 |
131
+ | 0.0085 | 21.2456 | 36500 | 0.3223 | 0.5245 | 0.5429 | 0.5335 | 0.9560 |
132
+ | 0.0081 | 21.5367 | 37000 | 0.3308 | 0.5170 | 0.5340 | 0.5254 | 0.9558 |
133
+ | 0.0095 | 21.8277 | 37500 | 0.3292 | 0.5333 | 0.5294 | 0.5313 | 0.9564 |
134
+ | 0.008 | 22.1187 | 38000 | 0.3326 | 0.5270 | 0.5416 | 0.5342 | 0.9563 |
135
+ | 0.007 | 22.4098 | 38500 | 0.3306 | 0.5252 | 0.5473 | 0.5360 | 0.9563 |
136
+ | 0.0083 | 22.7008 | 39000 | 0.3301 | 0.5354 | 0.5396 | 0.5375 | 0.9565 |
137
+ | 0.0079 | 22.9919 | 39500 | 0.3268 | 0.5357 | 0.5421 | 0.5389 | 0.9562 |
138
+ | 0.0072 | 23.2829 | 40000 | 0.3383 | 0.5367 | 0.5311 | 0.5339 | 0.9563 |
139
+ | 0.0068 | 23.5739 | 40500 | 0.3349 | 0.5281 | 0.5392 | 0.5336 | 0.9562 |
140
+ | 0.0069 | 23.8650 | 41000 | 0.3383 | 0.5280 | 0.5408 | 0.5343 | 0.9563 |
141
+ | 0.0073 | 24.1560 | 41500 | 0.3390 | 0.5217 | 0.5436 | 0.5324 | 0.9563 |
142
+ | 0.0057 | 24.4470 | 42000 | 0.3395 | 0.5279 | 0.5311 | 0.5295 | 0.9560 |
143
+ | 0.0064 | 24.7381 | 42500 | 0.3420 | 0.5403 | 0.5295 | 0.5349 | 0.9563 |
144
+ | 0.0065 | 25.0291 | 43000 | 0.3436 | 0.5372 | 0.5348 | 0.5360 | 0.9565 |
145
+ | 0.0053 | 25.3201 | 43500 | 0.3444 | 0.5259 | 0.5399 | 0.5328 | 0.9562 |
146
+ | 0.0058 | 25.6112 | 44000 | 0.3475 | 0.5160 | 0.5367 | 0.5261 | 0.9556 |
147
+ | 0.0061 | 25.9022 | 44500 | 0.3479 | 0.5393 | 0.5344 | 0.5369 | 0.9566 |
148
+ | 0.0051 | 26.1932 | 45000 | 0.3435 | 0.5266 | 0.5418 | 0.5341 | 0.9559 |
149
+ | 0.0055 | 26.4843 | 45500 | 0.3440 | 0.5282 | 0.5419 | 0.5350 | 0.9562 |
150
+ | 0.005 | 26.7753 | 46000 | 0.3466 | 0.5287 | 0.5423 | 0.5354 | 0.9564 |
151
+ | 0.0058 | 27.0664 | 46500 | 0.3470 | 0.5308 | 0.5490 | 0.5398 | 0.9565 |
152
+ | 0.0052 | 27.3574 | 47000 | 0.3506 | 0.5343 | 0.5379 | 0.5361 | 0.9564 |
153
+ | 0.0049 | 27.6484 | 47500 | 0.3475 | 0.5276 | 0.5473 | 0.5373 | 0.9563 |
154
+ | 0.0052 | 27.9395 | 48000 | 0.3496 | 0.5276 | 0.5483 | 0.5377 | 0.9565 |
155
+ | 0.0049 | 28.2305 | 48500 | 0.3507 | 0.5327 | 0.5422 | 0.5374 | 0.9564 |
156
+ | 0.0049 | 28.5215 | 49000 | 0.3528 | 0.5363 | 0.5399 | 0.5381 | 0.9565 |
157
+ | 0.0052 | 28.8126 | 49500 | 0.3516 | 0.5382 | 0.5385 | 0.5383 | 0.9565 |
158
+ | 0.0042 | 29.1036 | 50000 | 0.3499 | 0.5330 | 0.5454 | 0.5391 | 0.9565 |
159
+ | 0.0045 | 29.3946 | 50500 | 0.3514 | 0.5343 | 0.5389 | 0.5366 | 0.9565 |
160
+ | 0.0048 | 29.6857 | 51000 | 0.3517 | 0.5316 | 0.5418 | 0.5367 | 0.9564 |
161
+ | 0.0043 | 29.9767 | 51500 | 0.3518 | 0.5316 | 0.5425 | 0.5370 | 0.9565 |
162
 
163
 
164
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.2905982905982906, "recall": 0.6938775510204082, "f1": 0.4096385542168675, "accuracy": 0.9181467181467181}, "en_pud": {"precision": 0.44616977225672877, "recall": 0.40093023255813953, "f1": 0.4223419892209701, "accuracy": 0.9452210049112203}, "de_pud": {"precision": 0.10484406104844061, "recall": 0.3041385948026949, "f1": 0.15593387614113002, "accuracy": 0.8173081430781491}, "pt_pud": {"precision": 0.46352313167259784, "recall": 0.4740673339399454, "f1": 0.4687359424201529, "accuracy": 0.9542444567864314}, "ru_pud": {"precision": 0.012997562956945572, "recall": 0.06177606177606178, "f1": 0.021476510067114093, "accuracy": 0.5810384913459055}, "sv_pud": {"precision": 0.47181008902077154, "recall": 0.30903790087463556, "f1": 0.373458602466236, "accuracy": 0.9428601383937932}, "tl_trg": {"precision": 0.25, "recall": 0.5217391304347826, "f1": 0.3380281690140845, "accuracy": 0.9386920980926431}, "tl_ugnayan": {"precision": 0.03773584905660377, "recall": 0.12121212121212122, "f1": 0.05755395683453238, "accuracy": 0.8787602552415679}, "zh_gsd": {"precision": 0.4157014157014157, "recall": 0.4211212516297262, "f1": 0.4183937823834197, "accuracy": 0.9232434232434232}, "zh_gsdsimp": {"precision": 0.42987012987012985, "recall": 0.4338138925294889, "f1": 0.43183300717547296, "accuracy": 0.924908424908425}, "hr_set": {"precision": 0.6764305177111717, "recall": 0.7077690662865289, "f1": 0.6917450365726228, "accuracy": 0.9658697444352844}, "da_ddt": {"precision": 0.5845410628019324, "recall": 0.5413870246085011, "f1": 0.5621370499419279, "accuracy": 0.9677741195250923}, "en_ewt": {"precision": 0.5529290853031861, "recall": 0.4944852941176471, "f1": 0.5220766618146531, "accuracy": 0.9566880503645854}, "pt_bosque": {"precision": 0.5211598746081505, "recall": 0.5473251028806584, "f1": 0.5339221196306705, "accuracy": 0.9598971163599478}, "sr_set": {"precision": 0.738479262672811, "recall": 0.7567886658795749, "f1": 0.7475218658892129, "accuracy": 0.963663427020401}, "sk_snk": {"precision": 0.3508005822416303, "recall": 0.2633879781420765, "f1": 0.30087390761548066, "accuracy": 0.9122958542713567}, "sv_talbanken": {"precision": 0.625, "recall": 0.5612244897959183, "f1": 0.5913978494623656, "accuracy": 0.9926387593855818}}
 
1
+ {"ceb_gja": {"precision": 0.2905982905982906, "recall": 0.6938775510204082, "f1": 0.4096385542168675, "accuracy": 0.9181467181467181}, "en_pud": {"precision": 0.408876298394712, "recall": 0.4027906976744186, "f1": 0.40581068416119964, "accuracy": 0.9448432187381942}, "de_pud": {"precision": 0.09606986899563319, "recall": 0.3176130895091434, "f1": 0.1475189986589182, "accuracy": 0.7986967324551123}, "pt_pud": {"precision": 0.4526226734348562, "recall": 0.48680618744313015, "f1": 0.4690925032880316, "accuracy": 0.9546716794121417}, "ru_pud": {"precision": 0.014307355664029625, "recall": 0.08204633204633205, "f1": 0.02436577325498065, "accuracy": 0.5190390080082666}, "sv_pud": {"precision": 0.48132780082987553, "recall": 0.33819241982507287, "f1": 0.3972602739726028, "accuracy": 0.9451142797232124}, "tl_trg": {"precision": 0.22058823529411764, "recall": 0.6521739130434783, "f1": 0.32967032967032966, "accuracy": 0.9141689373297003}, "tl_ugnayan": {"precision": 0.03305785123966942, "recall": 0.12121212121212122, "f1": 0.05194805194805195, "accuracy": 0.8641750227894257}, "zh_gsd": {"precision": 0.4342105263157895, "recall": 0.4302477183833116, "f1": 0.43222003929273084, "accuracy": 0.9227439227439227}, "zh_gsdsimp": {"precision": 0.4262948207171315, "recall": 0.42070773263433814, "f1": 0.4234828496042217, "accuracy": 0.9244921744921745}, "hr_set": {"precision": 0.6521452145214521, "recall": 0.7042052744119743, "f1": 0.6771761480466072, "accuracy": 0.96479802143446}, "da_ddt": {"precision": 0.5563380281690141, "recall": 0.5302013422818792, "f1": 0.5429553264604812, "accuracy": 0.9667764142472314}, "en_ewt": {"precision": 0.5095969289827256, "recall": 0.4880514705882353, "f1": 0.49859154929577465, "accuracy": 0.9547754711718532}, "pt_bosque": {"precision": 0.5263559969442322, "recall": 0.5670781893004115, "f1": 0.545958795562599, "accuracy": 0.9606941023040139}, "sr_set": {"precision": 0.7265536723163842, "recall": 0.7591499409681228, "f1": 0.7424942263279446, "accuracy": 0.9640136590491201}, "sk_snk": {"precision": 0.35027472527472525, "recall": 0.2786885245901639, "f1": 0.310407790626902, "accuracy": 0.913552135678392}, "sv_talbanken": {"precision": 0.6610169491525424, "recall": 0.5969387755102041, "f1": 0.6273458445040214, "accuracy": 0.9934239583844531}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5a3c5ed8fddb68024d82ac8b70e9ff7e0cbbea6af6824cbbae43a6c93587627
3
  size 427407404
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa409ed2cf9aede47bb21af04ac72175edbaa2c105ff5e59887b8aa2e783d83
3
  size 427407404
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d956be57f56e0b91df14b6c8be545d55e8ca13092da9f9ff90b33a05f4dcbd67
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627c1ea359fe2c69a16a37c529c480e3b87e191247eaa25a1dd71815c5b8534c
3
  size 5304