haryoaw commited on
Commit
7f28714
1 Parent(s): 13f627f

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +127 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_full
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-scr-ner-half_data-univner_full44
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-scr-ner-half_data-univner_full44
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1359
25
+ - Precision: 0.8579
26
+ - Recall: 0.8661
27
+ - F1: 0.8620
28
+ - Accuracy: 0.9848
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 44
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0095 | 0.2910 | 500 | 0.0842 | 0.8414 | 0.8590 | 0.8501 | 0.9842 |
60
+ | 0.0115 | 0.5821 | 1000 | 0.0851 | 0.8363 | 0.8626 | 0.8493 | 0.9836 |
61
+ | 0.0108 | 0.8731 | 1500 | 0.0812 | 0.8414 | 0.8664 | 0.8537 | 0.9844 |
62
+ | 0.0086 | 1.1641 | 2000 | 0.0967 | 0.8277 | 0.8729 | 0.8497 | 0.9829 |
63
+ | 0.0083 | 1.4552 | 2500 | 0.0794 | 0.8469 | 0.8652 | 0.8560 | 0.9841 |
64
+ | 0.0082 | 1.7462 | 3000 | 0.0808 | 0.8391 | 0.8712 | 0.8548 | 0.9843 |
65
+ | 0.0089 | 2.0373 | 3500 | 0.0862 | 0.8488 | 0.8645 | 0.8566 | 0.9846 |
66
+ | 0.0063 | 2.3283 | 4000 | 0.0889 | 0.8455 | 0.8735 | 0.8593 | 0.9847 |
67
+ | 0.0068 | 2.6193 | 4500 | 0.0900 | 0.8463 | 0.8638 | 0.8550 | 0.9842 |
68
+ | 0.0071 | 2.9104 | 5000 | 0.0883 | 0.8362 | 0.8691 | 0.8524 | 0.9837 |
69
+ | 0.0055 | 3.2014 | 5500 | 0.0945 | 0.8433 | 0.8588 | 0.8510 | 0.9838 |
70
+ | 0.0055 | 3.4924 | 6000 | 0.0951 | 0.8428 | 0.8687 | 0.8556 | 0.9840 |
71
+ | 0.0059 | 3.7835 | 6500 | 0.0975 | 0.8563 | 0.8551 | 0.8557 | 0.9842 |
72
+ | 0.0054 | 4.0745 | 7000 | 0.1009 | 0.8422 | 0.8673 | 0.8546 | 0.9841 |
73
+ | 0.0047 | 4.3655 | 7500 | 0.0967 | 0.8556 | 0.8589 | 0.8572 | 0.9848 |
74
+ | 0.0048 | 4.6566 | 8000 | 0.0989 | 0.8506 | 0.8694 | 0.8599 | 0.9847 |
75
+ | 0.0048 | 4.9476 | 8500 | 0.0959 | 0.8526 | 0.8713 | 0.8619 | 0.9844 |
76
+ | 0.0036 | 5.2386 | 9000 | 0.1014 | 0.8476 | 0.8706 | 0.8589 | 0.9841 |
77
+ | 0.0042 | 5.5297 | 9500 | 0.1147 | 0.8068 | 0.8613 | 0.8332 | 0.9814 |
78
+ | 0.0048 | 5.8207 | 10000 | 0.1065 | 0.8392 | 0.8691 | 0.8539 | 0.9844 |
79
+ | 0.0041 | 6.1118 | 10500 | 0.1076 | 0.8417 | 0.8758 | 0.8584 | 0.9843 |
80
+ | 0.0035 | 6.4028 | 11000 | 0.1029 | 0.8505 | 0.8732 | 0.8617 | 0.9848 |
81
+ | 0.0036 | 6.6938 | 11500 | 0.0929 | 0.8460 | 0.8719 | 0.8587 | 0.9849 |
82
+ | 0.0038 | 6.9849 | 12000 | 0.1019 | 0.8494 | 0.8631 | 0.8562 | 0.9846 |
83
+ | 0.0031 | 7.2759 | 12500 | 0.1073 | 0.8563 | 0.8575 | 0.8569 | 0.9845 |
84
+ | 0.0031 | 7.5669 | 13000 | 0.1013 | 0.8431 | 0.8696 | 0.8561 | 0.9847 |
85
+ | 0.0034 | 7.8580 | 13500 | 0.1058 | 0.8533 | 0.8596 | 0.8565 | 0.9845 |
86
+ | 0.0027 | 8.1490 | 14000 | 0.1154 | 0.8431 | 0.8719 | 0.8572 | 0.9845 |
87
+ | 0.0027 | 8.4400 | 14500 | 0.1030 | 0.8404 | 0.8785 | 0.8591 | 0.9845 |
88
+ | 0.0028 | 8.7311 | 15000 | 0.1132 | 0.8559 | 0.8510 | 0.8534 | 0.9846 |
89
+ | 0.003 | 9.0221 | 15500 | 0.1106 | 0.8514 | 0.8648 | 0.8581 | 0.9848 |
90
+ | 0.0022 | 9.3132 | 16000 | 0.1136 | 0.8586 | 0.8657 | 0.8621 | 0.9852 |
91
+ | 0.0025 | 9.6042 | 16500 | 0.1128 | 0.8494 | 0.8697 | 0.8594 | 0.9848 |
92
+ | 0.002 | 9.8952 | 17000 | 0.1139 | 0.8453 | 0.8600 | 0.8526 | 0.9841 |
93
+ | 0.0024 | 10.1863 | 17500 | 0.1124 | 0.8541 | 0.8658 | 0.8599 | 0.9849 |
94
+ | 0.002 | 10.4773 | 18000 | 0.1154 | 0.8368 | 0.8663 | 0.8513 | 0.9842 |
95
+ | 0.0019 | 10.7683 | 18500 | 0.1182 | 0.8457 | 0.8629 | 0.8542 | 0.9844 |
96
+ | 0.0023 | 11.0594 | 19000 | 0.1140 | 0.8531 | 0.8596 | 0.8563 | 0.9846 |
97
+ | 0.0018 | 11.3504 | 19500 | 0.1194 | 0.8526 | 0.8683 | 0.8604 | 0.9851 |
98
+ | 0.0016 | 11.6414 | 20000 | 0.1198 | 0.8527 | 0.8652 | 0.8589 | 0.9848 |
99
+ | 0.0021 | 11.9325 | 20500 | 0.1169 | 0.8592 | 0.8654 | 0.8623 | 0.9852 |
100
+ | 0.0016 | 12.2235 | 21000 | 0.1229 | 0.8605 | 0.8626 | 0.8616 | 0.9848 |
101
+ | 0.0021 | 12.5146 | 21500 | 0.1198 | 0.8484 | 0.8697 | 0.8589 | 0.9846 |
102
+ | 0.0019 | 12.8056 | 22000 | 0.1177 | 0.8535 | 0.8600 | 0.8568 | 0.9844 |
103
+ | 0.0013 | 13.0966 | 22500 | 0.1190 | 0.8436 | 0.8716 | 0.8574 | 0.9844 |
104
+ | 0.0016 | 13.3877 | 23000 | 0.1227 | 0.8475 | 0.8665 | 0.8569 | 0.9847 |
105
+ | 0.0012 | 13.6787 | 23500 | 0.1237 | 0.8513 | 0.8676 | 0.8594 | 0.9848 |
106
+ | 0.0015 | 13.9697 | 24000 | 0.1198 | 0.8407 | 0.8709 | 0.8555 | 0.9843 |
107
+ | 0.0012 | 14.2608 | 24500 | 0.1239 | 0.8516 | 0.8689 | 0.8602 | 0.9850 |
108
+ | 0.0014 | 14.5518 | 25000 | 0.1261 | 0.8432 | 0.8634 | 0.8532 | 0.9843 |
109
+ | 0.0015 | 14.8428 | 25500 | 0.1220 | 0.8451 | 0.8716 | 0.8582 | 0.9849 |
110
+ | 0.0013 | 15.1339 | 26000 | 0.1209 | 0.8608 | 0.8598 | 0.8603 | 0.9847 |
111
+ | 0.0011 | 15.4249 | 26500 | 0.1261 | 0.8457 | 0.8637 | 0.8546 | 0.9847 |
112
+ | 0.0011 | 15.7159 | 27000 | 0.1273 | 0.8510 | 0.8616 | 0.8563 | 0.9846 |
113
+ | 0.0022 | 16.0070 | 27500 | 0.1282 | 0.8431 | 0.8738 | 0.8582 | 0.9847 |
114
+ | 0.001 | 16.2980 | 28000 | 0.1357 | 0.8451 | 0.8628 | 0.8539 | 0.9842 |
115
+ | 0.0013 | 16.5891 | 28500 | 0.1301 | 0.8465 | 0.8658 | 0.8561 | 0.9843 |
116
+ | 0.0008 | 16.8801 | 29000 | 0.1335 | 0.8533 | 0.8678 | 0.8605 | 0.9845 |
117
+ | 0.0011 | 17.1711 | 29500 | 0.1338 | 0.8572 | 0.8654 | 0.8613 | 0.9846 |
118
+ | 0.0006 | 17.4622 | 30000 | 0.1368 | 0.8561 | 0.8628 | 0.8594 | 0.9847 |
119
+ | 0.0008 | 17.7532 | 30500 | 0.1359 | 0.8579 | 0.8661 | 0.8620 | 0.9848 |
120
+
121
+
122
+ ### Framework versions
123
+
124
+ - Transformers 4.44.2
125
+ - Pytorch 2.1.1+cu121
126
+ - Datasets 2.14.5
127
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.696969696969697, "recall": 0.9387755102040817, "f1": 0.8000000000000002, "accuracy": 0.9806949806949807}, "en_pud": {"precision": 0.818785578747628, "recall": 0.8027906976744186, "f1": 0.8107092531705025, "accuracy": 0.9816301473366075}, "de_pud": {"precision": 0.7789954337899543, "recall": 0.8209817131857555, "f1": 0.7994376757263355, "accuracy": 0.9766068163705405}, "pt_pud": {"precision": 0.8659517426273459, "recall": 0.8817106460418562, "f1": 0.8737601442741209, "accuracy": 0.986798820865553}, "ru_pud": {"precision": 0.7227813357731016, "recall": 0.7625482625482626, "f1": 0.7421324565523719, "accuracy": 0.9740118832343064}, "sv_pud": {"precision": 0.870873786407767, "recall": 0.8717201166180758, "f1": 0.8712967459932006, "accuracy": 0.9867372614803942}, "tl_trg": {"precision": 0.9565217391304348, "recall": 0.9565217391304348, "f1": 0.9565217391304348, "accuracy": 0.997275204359673}, "tl_ugnayan": {"precision": 0.6153846153846154, "recall": 0.7272727272727273, "f1": 0.6666666666666667, "accuracy": 0.97538742023701}, "zh_gsd": {"precision": 0.8441558441558441, "recall": 0.847457627118644, "f1": 0.8458035133376708, "accuracy": 0.9774392274392274}, "zh_gsdsimp": {"precision": 0.8354922279792746, "recall": 0.8453473132372215, "f1": 0.8403908794788273, "accuracy": 0.9766899766899767}, "hr_set": {"precision": 0.9251224632610217, "recall": 0.9422665716322167, "f1": 0.9336158192090397, "accuracy": 0.9913849958779885}, "da_ddt": {"precision": 0.8823529411764706, "recall": 0.8389261744966443, "f1": 0.8600917431192661, "accuracy": 0.9890252419435299}, "en_ewt": {"precision": 0.8258373205741627, "recall": 0.7931985294117647, "f1": 0.8091889357712142, "accuracy": 0.9803163724747977}, "pt_bosque": {"precision": 0.890625, "recall": 0.891358024691358, "f1": 0.8909913615795969, "accuracy": 0.9889871033183597}, "sr_set": {"precision": 0.9539007092198581, "recall": 0.9527744982290437, "f1": 0.9533372711163615, "accuracy": 0.9916819893179232}, "sk_snk": {"precision": 0.8324265505984766, "recall": 0.8360655737704918, "f1": 0.8342420937840785, "accuracy": 0.9750314070351759}, "sv_talbanken": {"precision": 0.8504672897196262, "recall": 0.9285714285714286, "f1": 0.8878048780487805, "accuracy": 0.9978897776905334}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4d920e6e477c8806fe1aaf3ccf75f2527350bff4687b900f59b650991c50bf9
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dd04ca8a603c3762d3c05bde7588e35f9382cfd0b885387d81d3cbc960e5c7b
3
+ size 5304