Initial Commit
Browse files- README.md +127 -0
- config.json +46 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: haryoaw/scenario-TCR-NER_data-univner_full
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-non-kd-scr-ner-half_data-univner_full44
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-non-kd-scr-ner-half_data-univner_full44
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1359
|
25 |
+
- Precision: 0.8579
|
26 |
+
- Recall: 0.8661
|
27 |
+
- F1: 0.8620
|
28 |
+
- Accuracy: 0.9848
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 44
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 30
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.0095 | 0.2910 | 500 | 0.0842 | 0.8414 | 0.8590 | 0.8501 | 0.9842 |
|
60 |
+
| 0.0115 | 0.5821 | 1000 | 0.0851 | 0.8363 | 0.8626 | 0.8493 | 0.9836 |
|
61 |
+
| 0.0108 | 0.8731 | 1500 | 0.0812 | 0.8414 | 0.8664 | 0.8537 | 0.9844 |
|
62 |
+
| 0.0086 | 1.1641 | 2000 | 0.0967 | 0.8277 | 0.8729 | 0.8497 | 0.9829 |
|
63 |
+
| 0.0083 | 1.4552 | 2500 | 0.0794 | 0.8469 | 0.8652 | 0.8560 | 0.9841 |
|
64 |
+
| 0.0082 | 1.7462 | 3000 | 0.0808 | 0.8391 | 0.8712 | 0.8548 | 0.9843 |
|
65 |
+
| 0.0089 | 2.0373 | 3500 | 0.0862 | 0.8488 | 0.8645 | 0.8566 | 0.9846 |
|
66 |
+
| 0.0063 | 2.3283 | 4000 | 0.0889 | 0.8455 | 0.8735 | 0.8593 | 0.9847 |
|
67 |
+
| 0.0068 | 2.6193 | 4500 | 0.0900 | 0.8463 | 0.8638 | 0.8550 | 0.9842 |
|
68 |
+
| 0.0071 | 2.9104 | 5000 | 0.0883 | 0.8362 | 0.8691 | 0.8524 | 0.9837 |
|
69 |
+
| 0.0055 | 3.2014 | 5500 | 0.0945 | 0.8433 | 0.8588 | 0.8510 | 0.9838 |
|
70 |
+
| 0.0055 | 3.4924 | 6000 | 0.0951 | 0.8428 | 0.8687 | 0.8556 | 0.9840 |
|
71 |
+
| 0.0059 | 3.7835 | 6500 | 0.0975 | 0.8563 | 0.8551 | 0.8557 | 0.9842 |
|
72 |
+
| 0.0054 | 4.0745 | 7000 | 0.1009 | 0.8422 | 0.8673 | 0.8546 | 0.9841 |
|
73 |
+
| 0.0047 | 4.3655 | 7500 | 0.0967 | 0.8556 | 0.8589 | 0.8572 | 0.9848 |
|
74 |
+
| 0.0048 | 4.6566 | 8000 | 0.0989 | 0.8506 | 0.8694 | 0.8599 | 0.9847 |
|
75 |
+
| 0.0048 | 4.9476 | 8500 | 0.0959 | 0.8526 | 0.8713 | 0.8619 | 0.9844 |
|
76 |
+
| 0.0036 | 5.2386 | 9000 | 0.1014 | 0.8476 | 0.8706 | 0.8589 | 0.9841 |
|
77 |
+
| 0.0042 | 5.5297 | 9500 | 0.1147 | 0.8068 | 0.8613 | 0.8332 | 0.9814 |
|
78 |
+
| 0.0048 | 5.8207 | 10000 | 0.1065 | 0.8392 | 0.8691 | 0.8539 | 0.9844 |
|
79 |
+
| 0.0041 | 6.1118 | 10500 | 0.1076 | 0.8417 | 0.8758 | 0.8584 | 0.9843 |
|
80 |
+
| 0.0035 | 6.4028 | 11000 | 0.1029 | 0.8505 | 0.8732 | 0.8617 | 0.9848 |
|
81 |
+
| 0.0036 | 6.6938 | 11500 | 0.0929 | 0.8460 | 0.8719 | 0.8587 | 0.9849 |
|
82 |
+
| 0.0038 | 6.9849 | 12000 | 0.1019 | 0.8494 | 0.8631 | 0.8562 | 0.9846 |
|
83 |
+
| 0.0031 | 7.2759 | 12500 | 0.1073 | 0.8563 | 0.8575 | 0.8569 | 0.9845 |
|
84 |
+
| 0.0031 | 7.5669 | 13000 | 0.1013 | 0.8431 | 0.8696 | 0.8561 | 0.9847 |
|
85 |
+
| 0.0034 | 7.8580 | 13500 | 0.1058 | 0.8533 | 0.8596 | 0.8565 | 0.9845 |
|
86 |
+
| 0.0027 | 8.1490 | 14000 | 0.1154 | 0.8431 | 0.8719 | 0.8572 | 0.9845 |
|
87 |
+
| 0.0027 | 8.4400 | 14500 | 0.1030 | 0.8404 | 0.8785 | 0.8591 | 0.9845 |
|
88 |
+
| 0.0028 | 8.7311 | 15000 | 0.1132 | 0.8559 | 0.8510 | 0.8534 | 0.9846 |
|
89 |
+
| 0.003 | 9.0221 | 15500 | 0.1106 | 0.8514 | 0.8648 | 0.8581 | 0.9848 |
|
90 |
+
| 0.0022 | 9.3132 | 16000 | 0.1136 | 0.8586 | 0.8657 | 0.8621 | 0.9852 |
|
91 |
+
| 0.0025 | 9.6042 | 16500 | 0.1128 | 0.8494 | 0.8697 | 0.8594 | 0.9848 |
|
92 |
+
| 0.002 | 9.8952 | 17000 | 0.1139 | 0.8453 | 0.8600 | 0.8526 | 0.9841 |
|
93 |
+
| 0.0024 | 10.1863 | 17500 | 0.1124 | 0.8541 | 0.8658 | 0.8599 | 0.9849 |
|
94 |
+
| 0.002 | 10.4773 | 18000 | 0.1154 | 0.8368 | 0.8663 | 0.8513 | 0.9842 |
|
95 |
+
| 0.0019 | 10.7683 | 18500 | 0.1182 | 0.8457 | 0.8629 | 0.8542 | 0.9844 |
|
96 |
+
| 0.0023 | 11.0594 | 19000 | 0.1140 | 0.8531 | 0.8596 | 0.8563 | 0.9846 |
|
97 |
+
| 0.0018 | 11.3504 | 19500 | 0.1194 | 0.8526 | 0.8683 | 0.8604 | 0.9851 |
|
98 |
+
| 0.0016 | 11.6414 | 20000 | 0.1198 | 0.8527 | 0.8652 | 0.8589 | 0.9848 |
|
99 |
+
| 0.0021 | 11.9325 | 20500 | 0.1169 | 0.8592 | 0.8654 | 0.8623 | 0.9852 |
|
100 |
+
| 0.0016 | 12.2235 | 21000 | 0.1229 | 0.8605 | 0.8626 | 0.8616 | 0.9848 |
|
101 |
+
| 0.0021 | 12.5146 | 21500 | 0.1198 | 0.8484 | 0.8697 | 0.8589 | 0.9846 |
|
102 |
+
| 0.0019 | 12.8056 | 22000 | 0.1177 | 0.8535 | 0.8600 | 0.8568 | 0.9844 |
|
103 |
+
| 0.0013 | 13.0966 | 22500 | 0.1190 | 0.8436 | 0.8716 | 0.8574 | 0.9844 |
|
104 |
+
| 0.0016 | 13.3877 | 23000 | 0.1227 | 0.8475 | 0.8665 | 0.8569 | 0.9847 |
|
105 |
+
| 0.0012 | 13.6787 | 23500 | 0.1237 | 0.8513 | 0.8676 | 0.8594 | 0.9848 |
|
106 |
+
| 0.0015 | 13.9697 | 24000 | 0.1198 | 0.8407 | 0.8709 | 0.8555 | 0.9843 |
|
107 |
+
| 0.0012 | 14.2608 | 24500 | 0.1239 | 0.8516 | 0.8689 | 0.8602 | 0.9850 |
|
108 |
+
| 0.0014 | 14.5518 | 25000 | 0.1261 | 0.8432 | 0.8634 | 0.8532 | 0.9843 |
|
109 |
+
| 0.0015 | 14.8428 | 25500 | 0.1220 | 0.8451 | 0.8716 | 0.8582 | 0.9849 |
|
110 |
+
| 0.0013 | 15.1339 | 26000 | 0.1209 | 0.8608 | 0.8598 | 0.8603 | 0.9847 |
|
111 |
+
| 0.0011 | 15.4249 | 26500 | 0.1261 | 0.8457 | 0.8637 | 0.8546 | 0.9847 |
|
112 |
+
| 0.0011 | 15.7159 | 27000 | 0.1273 | 0.8510 | 0.8616 | 0.8563 | 0.9846 |
|
113 |
+
| 0.0022 | 16.0070 | 27500 | 0.1282 | 0.8431 | 0.8738 | 0.8582 | 0.9847 |
|
114 |
+
| 0.001 | 16.2980 | 28000 | 0.1357 | 0.8451 | 0.8628 | 0.8539 | 0.9842 |
|
115 |
+
| 0.0013 | 16.5891 | 28500 | 0.1301 | 0.8465 | 0.8658 | 0.8561 | 0.9843 |
|
116 |
+
| 0.0008 | 16.8801 | 29000 | 0.1335 | 0.8533 | 0.8678 | 0.8605 | 0.9845 |
|
117 |
+
| 0.0011 | 17.1711 | 29500 | 0.1338 | 0.8572 | 0.8654 | 0.8613 | 0.9846 |
|
118 |
+
| 0.0006 | 17.4622 | 30000 | 0.1368 | 0.8561 | 0.8628 | 0.8594 | 0.9847 |
|
119 |
+
| 0.0008 | 17.7532 | 30500 | 0.1359 | 0.8579 | 0.8661 | 0.8620 | 0.9848 |
|
120 |
+
|
121 |
+
|
122 |
+
### Framework versions
|
123 |
+
|
124 |
+
- Transformers 4.44.2
|
125 |
+
- Pytorch 2.1.1+cu121
|
126 |
+
- Datasets 2.14.5
|
127 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6"
|
21 |
+
},
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 3072,
|
24 |
+
"label2id": {
|
25 |
+
"LABEL_0": 0,
|
26 |
+
"LABEL_1": 1,
|
27 |
+
"LABEL_2": 2,
|
28 |
+
"LABEL_3": 3,
|
29 |
+
"LABEL_4": 4,
|
30 |
+
"LABEL_5": 5,
|
31 |
+
"LABEL_6": 6
|
32 |
+
},
|
33 |
+
"layer_norm_eps": 1e-05,
|
34 |
+
"max_position_embeddings": 514,
|
35 |
+
"model_type": "xlm-roberta",
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 12,
|
38 |
+
"output_past": true,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"position_embedding_type": "absolute",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.44.2",
|
43 |
+
"type_vocab_size": 1,
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 250002
|
46 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.696969696969697, "recall": 0.9387755102040817, "f1": 0.8000000000000002, "accuracy": 0.9806949806949807}, "en_pud": {"precision": 0.818785578747628, "recall": 0.8027906976744186, "f1": 0.8107092531705025, "accuracy": 0.9816301473366075}, "de_pud": {"precision": 0.7789954337899543, "recall": 0.8209817131857555, "f1": 0.7994376757263355, "accuracy": 0.9766068163705405}, "pt_pud": {"precision": 0.8659517426273459, "recall": 0.8817106460418562, "f1": 0.8737601442741209, "accuracy": 0.986798820865553}, "ru_pud": {"precision": 0.7227813357731016, "recall": 0.7625482625482626, "f1": 0.7421324565523719, "accuracy": 0.9740118832343064}, "sv_pud": {"precision": 0.870873786407767, "recall": 0.8717201166180758, "f1": 0.8712967459932006, "accuracy": 0.9867372614803942}, "tl_trg": {"precision": 0.9565217391304348, "recall": 0.9565217391304348, "f1": 0.9565217391304348, "accuracy": 0.997275204359673}, "tl_ugnayan": {"precision": 0.6153846153846154, "recall": 0.7272727272727273, "f1": 0.6666666666666667, "accuracy": 0.97538742023701}, "zh_gsd": {"precision": 0.8441558441558441, "recall": 0.847457627118644, "f1": 0.8458035133376708, "accuracy": 0.9774392274392274}, "zh_gsdsimp": {"precision": 0.8354922279792746, "recall": 0.8453473132372215, "f1": 0.8403908794788273, "accuracy": 0.9766899766899767}, "hr_set": {"precision": 0.9251224632610217, "recall": 0.9422665716322167, "f1": 0.9336158192090397, "accuracy": 0.9913849958779885}, "da_ddt": {"precision": 0.8823529411764706, "recall": 0.8389261744966443, "f1": 0.8600917431192661, "accuracy": 0.9890252419435299}, "en_ewt": {"precision": 0.8258373205741627, "recall": 0.7931985294117647, "f1": 0.8091889357712142, "accuracy": 0.9803163724747977}, "pt_bosque": {"precision": 0.890625, "recall": 0.891358024691358, "f1": 0.8909913615795969, "accuracy": 0.9889871033183597}, "sr_set": {"precision": 0.9539007092198581, "recall": 0.9527744982290437, "f1": 0.9533372711163615, "accuracy": 0.9916819893179232}, "sk_snk": {"precision": 0.8324265505984766, "recall": 0.8360655737704918, "f1": 0.8342420937840785, "accuracy": 0.9750314070351759}, "sv_talbanken": {"precision": 0.8504672897196262, "recall": 0.9285714285714286, "f1": 0.8878048780487805, "accuracy": 0.9978897776905334}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4d920e6e477c8806fe1aaf3ccf75f2527350bff4687b900f59b650991c50bf9
|
3 |
+
size 1109857804
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dd04ca8a603c3762d3c05bde7588e35f9382cfd0b885387d81d3cbc960e5c7b
|
3 |
+
size 5304
|