File size: 1,984 Bytes
e821e69
 
 
 
 
 
 
 
6a83889
e821e69
 
 
 
6a83889
e821e69
 
 
6a83889
 
 
 
 
e821e69
1035829
6a83889
 
 
 
 
 
e821e69
 
 
 
 
6a83889
e821e69
 
 
6a83889
e821e69
 
 
6a83889
 
 
 
 
 
 
 
 
e821e69
 
 
 
 
 
 
 
6a83889
 
 
 
 
 
e821e69
 
 
 
6a83889
 
e821e69
6a83889
 
e821e69
6a83889
 
e821e69
6a83889
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
tags: []
---
## Model Details

### Model Description

This model was part of the Evolutionary Scale BioML Hackathon.


## Uses

Used for ddG prediction for single mutation.

## How to Get Started with the Model

```python
# Make sure `esm` is installed, if not use: `pip install esm`
from transformers import AutoModel
from esm.tokenization.sequence_tokenizer import EsmSequenceTokenizer
import torch

model = AutoModel.from_pretrained("hazemessam/esm3_ddg_v2", trust_remote_code=True)
tokenizer = EsmSequenceTokenizer()
model.eval()

with torch.no_grad():
    output = model(tokenized_seq1, tokenized_seq2, positions=mutation_position)
```

## Training Details

### Training Data

Training Data: https://huggingface.co/datasets/hazemessam/ddg/blob/main/S2648.csv

### Training Procedure

The results listed below are the best results for each evaluation dataset, but this checkpoint is the best checkpoint based on `Ssym` evaluation dataset

#### Training Hyperparameters

* Scheduler: Cosine
* Warmup steps: 400
* Seed: 7
* Gradient accumulation steps: 16
* Batch size: 1
* DoRA rank: 16
* DoRA alpha: 32
* Updated Layers: ["layernorm_qkv.1", "ffn.1", "ffn.3"]
* DoRA bias: "none"

[More Information Needed]

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data
The model was evaluated on the following:
* Ssym: https://huggingface.co/datasets/hazemessam/ddg/blob/main/ssym.csv
* Ssym_r: https://huggingface.co/datasets/hazemessam/ddg/blob/main/ssym_r.csv
* P53: https://huggingface.co/datasets/hazemessam/ddg/blob/main/p53.csv
* Myoglobin: https://huggingface.co/datasets/hazemessam/ddg/blob/main/myoglobin.csv
* Myoglobin_r: https://huggingface.co/datasets/hazemessam/ddg/blob/main/myoglobin_r.csv


### Results

Ssym pearson correlation: 0.85
Ssym RMSE: 0.83

Ssym_r pearson correlation: 0.85
Ssym_r RMSE: 0.83

Myoglobin pearson correlation: 0.65
Myoglobin RMSE: 0.83

Myoglobin_r pearson correlation: 0.65
Myoglobin_r RMSE: 0.84