--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: bert-large-uncased model-index: - name: bert-large-uncased_winobias_finetuned results: [] --- # bert-large-uncased_winobias_finetuned This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4783 - Accuracy: 0.7986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.38 | 5 | 0.7011 | 0.4994 | | No log | 0.77 | 10 | 0.6942 | 0.4987 | | No log | 1.15 | 15 | 0.6941 | 0.5063 | | No log | 1.54 | 20 | 0.6936 | 0.4924 | | No log | 1.92 | 25 | 0.6928 | 0.5114 | | No log | 2.31 | 30 | 0.6925 | 0.5196 | | No log | 2.69 | 35 | 0.6925 | 0.5215 | | No log | 3.08 | 40 | 0.6923 | 0.5227 | | No log | 3.46 | 45 | 0.6922 | 0.5259 | | No log | 3.85 | 50 | 0.6922 | 0.5202 | | No log | 4.23 | 55 | 0.6918 | 0.5316 | | No log | 4.62 | 60 | 0.6912 | 0.5499 | | No log | 5.0 | 65 | 0.6904 | 0.5574 | | No log | 5.38 | 70 | 0.6899 | 0.5492 | | No log | 5.77 | 75 | 0.6894 | 0.5417 | | No log | 6.15 | 80 | 0.6890 | 0.5290 | | No log | 6.54 | 85 | 0.6883 | 0.5366 | | No log | 6.92 | 90 | 0.6863 | 0.5726 | | No log | 7.31 | 95 | 0.6837 | 0.5909 | | No log | 7.69 | 100 | 0.6812 | 0.5890 | | No log | 8.08 | 105 | 0.6788 | 0.5915 | | No log | 8.46 | 110 | 0.6738 | 0.6225 | | No log | 8.85 | 115 | 0.6685 | 0.6503 | | No log | 9.23 | 120 | 0.6616 | 0.6698 | | No log | 9.62 | 125 | 0.6533 | 0.6799 | | No log | 10.0 | 130 | 0.6403 | 0.7027 | | No log | 10.38 | 135 | 0.6282 | 0.7077 | | No log | 10.77 | 140 | 0.6142 | 0.7235 | | No log | 11.15 | 145 | 0.5967 | 0.7355 | | No log | 11.54 | 150 | 0.5814 | 0.7437 | | No log | 11.92 | 155 | 0.5662 | 0.7513 | | No log | 12.31 | 160 | 0.5454 | 0.7607 | | No log | 12.69 | 165 | 0.5251 | 0.7771 | | No log | 13.08 | 170 | 0.5091 | 0.7872 | | No log | 13.46 | 175 | 0.4975 | 0.7942 | | No log | 13.85 | 180 | 0.4892 | 0.7967 | | No log | 14.23 | 185 | 0.4832 | 0.7992 | | No log | 14.62 | 190 | 0.4797 | 0.8005 | | No log | 15.0 | 195 | 0.4783 | 0.7986 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2