--- license: apache-2.0 tags: - generated_from_trainer datasets: - crows_pairs metrics: - accuracy model-index: - name: t5-small_crows_pairs_finetuned results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: crows_pairs type: crows_pairs config: crows_pairs split: test args: crows_pairs metrics: - name: Accuracy type: accuracy value: 0.5827814569536424 --- # t5-small_crows_pairs_finetuned This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the crows_pairs dataset. It achieves the following results on the evaluation set: - Loss: 0.5333 - Accuracy: 0.5828 - Tp: 0.4967 - Tn: 0.0861 - Fp: 0.4106 - Fn: 0.0066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:| | 4.1732 | 1.05 | 20 | 2.2158 | 0.8245 | 0.4404 | 0.3841 | 0.1126 | 0.0629 | | 0.6547 | 2.11 | 40 | 0.4472 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.4173 | 3.16 | 60 | 0.3662 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.3822 | 4.21 | 80 | 0.3529 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.394 | 5.26 | 100 | 0.3584 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.36 | 6.32 | 120 | 0.3446 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.3472 | 7.37 | 140 | 0.3410 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.3241 | 8.42 | 160 | 0.3369 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.3247 | 9.47 | 180 | 0.3252 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.3045 | 10.53 | 200 | 0.3152 | 0.5033 | 0.5033 | 0.0 | 0.4967 | 0.0 | | 0.2863 | 11.58 | 220 | 0.3034 | 0.5232 | 0.5033 | 0.0199 | 0.4768 | 0.0 | | 0.2462 | 12.63 | 240 | 0.2958 | 0.5232 | 0.5033 | 0.0199 | 0.4768 | 0.0 | | 0.2151 | 13.68 | 260 | 0.2988 | 0.5232 | 0.5033 | 0.0199 | 0.4768 | 0.0 | | 0.2323 | 14.74 | 280 | 0.2964 | 0.5397 | 0.5033 | 0.0364 | 0.4603 | 0.0 | | 0.1951 | 15.79 | 300 | 0.2994 | 0.5430 | 0.5033 | 0.0397 | 0.4570 | 0.0 | | 0.1848 | 16.84 | 320 | 0.3049 | 0.5530 | 0.5033 | 0.0497 | 0.4470 | 0.0 | | 0.1875 | 17.89 | 340 | 0.3117 | 0.5596 | 0.5033 | 0.0563 | 0.4404 | 0.0 | | 0.1646 | 18.95 | 360 | 0.3291 | 0.5596 | 0.5033 | 0.0563 | 0.4404 | 0.0 | | 0.1622 | 20.0 | 380 | 0.3341 | 0.5563 | 0.5033 | 0.0530 | 0.4437 | 0.0 | | 0.1511 | 21.05 | 400 | 0.3415 | 0.5596 | 0.5033 | 0.0563 | 0.4404 | 0.0 | | 0.1497 | 22.11 | 420 | 0.3556 | 0.5629 | 0.5033 | 0.0596 | 0.4371 | 0.0 | | 0.1195 | 23.16 | 440 | 0.3717 | 0.5563 | 0.5033 | 0.0530 | 0.4437 | 0.0 | | 0.1319 | 24.21 | 460 | 0.3753 | 0.5662 | 0.5033 | 0.0629 | 0.4338 | 0.0 | | 0.1099 | 25.26 | 480 | 0.3812 | 0.5728 | 0.5033 | 0.0695 | 0.4272 | 0.0 | | 0.1078 | 26.32 | 500 | 0.3879 | 0.5695 | 0.5033 | 0.0662 | 0.4305 | 0.0 | | 0.091 | 27.37 | 520 | 0.4009 | 0.5762 | 0.5 | 0.0762 | 0.4205 | 0.0033 | | 0.0939 | 28.42 | 540 | 0.4204 | 0.5795 | 0.5 | 0.0795 | 0.4172 | 0.0033 | | 0.1011 | 29.47 | 560 | 0.4295 | 0.5828 | 0.5 | 0.0828 | 0.4139 | 0.0033 | | 0.0871 | 30.53 | 580 | 0.4336 | 0.5762 | 0.5 | 0.0762 | 0.4205 | 0.0033 | | 0.0782 | 31.58 | 600 | 0.4421 | 0.5762 | 0.5 | 0.0762 | 0.4205 | 0.0033 | | 0.0842 | 32.63 | 620 | 0.4455 | 0.5762 | 0.5 | 0.0762 | 0.4205 | 0.0033 | | 0.0779 | 33.68 | 640 | 0.4588 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | | 0.0684 | 34.74 | 660 | 0.4728 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0719 | 35.79 | 680 | 0.4747 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | | 0.0754 | 36.84 | 700 | 0.4822 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0622 | 37.89 | 720 | 0.4887 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0604 | 38.95 | 740 | 0.4963 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0592 | 40.0 | 760 | 0.5034 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | | 0.0621 | 41.05 | 780 | 0.5099 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0548 | 42.11 | 800 | 0.5151 | 0.5861 | 0.4967 | 0.0894 | 0.4073 | 0.0066 | | 0.0653 | 43.16 | 820 | 0.5197 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0593 | 44.21 | 840 | 0.5238 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0445 | 45.26 | 860 | 0.5287 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0541 | 46.32 | 880 | 0.5298 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | | 0.0578 | 47.37 | 900 | 0.5318 | 0.5795 | 0.4967 | 0.0828 | 0.4139 | 0.0066 | | 0.0514 | 48.42 | 920 | 0.5330 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | | 0.0451 | 49.47 | 940 | 0.5333 | 0.5828 | 0.4967 | 0.0861 | 0.4106 | 0.0066 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2