--- license: apache-2.0 tags: - generated_from_trainer datasets: - crows_pairs metrics: - accuracy model-index: - name: t5-small_crows_pairs_finetuned results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: crows_pairs type: crows_pairs config: crows_pairs split: test args: crows_pairs metrics: - name: Accuracy type: accuracy value: 0.49337748344370863 --- # t5-small_crows_pairs_finetuned This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the crows_pairs dataset. It achieves the following results on the evaluation set: - Loss: 0.3224 - Accuracy: 0.4934 - Tp: 0.4868 - Tn: 0.0066 - Fp: 0.5066 - Fn: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:| | 6.2415 | 1.05 | 20 | 5.3021 | 0.6689 | 0.4868 | 0.1821 | 0.3311 | 0.0 | | 3.2024 | 2.11 | 40 | 2.0108 | 0.7119 | 0.3874 | 0.3245 | 0.1887 | 0.0993 | | 1.0469 | 3.16 | 60 | 0.5733 | 0.5232 | 0.4868 | 0.0364 | 0.4768 | 0.0 | | 0.4873 | 4.21 | 80 | 0.3613 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.4485 | 5.26 | 100 | 0.3531 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.4014 | 6.32 | 120 | 0.3609 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3846 | 7.37 | 140 | 0.3549 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.4003 | 8.42 | 160 | 0.3539 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3725 | 9.47 | 180 | 0.3569 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3435 | 10.53 | 200 | 0.3544 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3467 | 11.58 | 220 | 0.3555 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3426 | 12.63 | 240 | 0.3528 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.346 | 13.68 | 260 | 0.3499 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.338 | 14.74 | 280 | 0.3464 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3233 | 15.79 | 300 | 0.3489 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3283 | 16.84 | 320 | 0.3413 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3079 | 17.89 | 340 | 0.3408 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.3099 | 18.95 | 360 | 0.3339 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.2912 | 20.0 | 380 | 0.3296 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.2864 | 21.05 | 400 | 0.3224 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.2821 | 22.11 | 420 | 0.3200 | 0.4868 | 0.4868 | 0.0 | 0.5132 | 0.0 | | 0.2753 | 23.16 | 440 | 0.3140 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2531 | 24.21 | 460 | 0.3110 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2637 | 25.26 | 480 | 0.3115 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2624 | 26.32 | 500 | 0.3090 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.233 | 27.37 | 520 | 0.3056 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2402 | 28.42 | 540 | 0.3037 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2448 | 29.47 | 560 | 0.3081 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.248 | 30.53 | 580 | 0.3064 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2184 | 31.58 | 600 | 0.3066 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2278 | 32.63 | 620 | 0.3075 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2158 | 33.68 | 640 | 0.3076 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.222 | 34.74 | 660 | 0.3107 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2142 | 35.79 | 680 | 0.3128 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.2166 | 36.84 | 700 | 0.3117 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.1967 | 37.89 | 720 | 0.3157 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.201 | 38.95 | 740 | 0.3155 | 0.4901 | 0.4868 | 0.0033 | 0.5099 | 0.0 | | 0.1984 | 40.0 | 760 | 0.3166 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1968 | 41.05 | 780 | 0.3191 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1777 | 42.11 | 800 | 0.3199 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.2044 | 43.16 | 820 | 0.3203 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1915 | 44.21 | 840 | 0.3210 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1998 | 45.26 | 860 | 0.3214 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1956 | 46.32 | 880 | 0.3214 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1908 | 47.37 | 900 | 0.3223 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.1992 | 48.42 | 920 | 0.3224 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | | 0.2 | 49.47 | 940 | 0.3224 | 0.4934 | 0.4868 | 0.0066 | 0.5066 | 0.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2