File size: 2,478 Bytes
92bb0b1
 
 
 
697a8e2
 
92bb0b1
 
 
 
 
 
 
 
 
 
697a8e2
 
 
 
 
 
 
 
92bb0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697a8e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92bb0b1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: t5-small_winobias_finetuned_HBRPOI
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small_winobias_finetuned_HBRPOI

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3333
- Accuracy: 0.5
- Tp: 0.5
- Tn: 0.0
- Fp: 0.5
- Fn: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp  | Tn     | Fp     | Fn  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:------:|:------:|:---:|
| 0.437         | 0.8   | 20   | 0.3545          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3996        | 1.6   | 40   | 0.3565          | 0.5025   | 0.5 | 0.0025 | 0.4975 | 0.0 |
| 0.3844        | 2.4   | 60   | 0.3498          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3728        | 3.2   | 80   | 0.3529          | 0.5013   | 0.5 | 0.0013 | 0.4987 | 0.0 |
| 0.3732        | 4.0   | 100  | 0.3482          | 0.5006   | 0.5 | 0.0006 | 0.4994 | 0.0 |
| 0.3798        | 4.8   | 120  | 0.3484          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3607        | 5.6   | 140  | 0.3475          | 0.5006   | 0.5 | 0.0006 | 0.4994 | 0.0 |
| 0.3688        | 6.4   | 160  | 0.3456          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3597        | 7.2   | 180  | 0.3445          | 0.5006   | 0.5 | 0.0006 | 0.4994 | 0.0 |
| 0.3658        | 8.0   | 200  | 0.3402          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3629        | 8.8   | 220  | 0.3362          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |
| 0.3393        | 9.6   | 240  | 0.3333          | 0.5      | 0.5 | 0.0    | 0.5    | 0.0 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2