File size: 1,373 Bytes
b42df5a
bbc91c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42df5a
bbc91c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- ultralyticsplus
- yolov5
- ultralytics
- yolo
- vision
- object-detection
- pytorch
- awesome-yolov8-models
- indonesia
- layout detector

model-index:
- name: hermanshid/yolo-layout-detector
  results:
  - task:
      type: object-detection

    metrics:
      - type: precision  # since mAP@0.5 is not available on hf.co/metrics
        value: 0.979  # min: 0.0 - max: 1.0
        name: mAP@0.5(box)
inference: false
---

# YOLOv5 for Layout Detection


## Dataset
Dataset available in [kaggle](https://www.kaggle.com/datasets/hermansugiharto/book-layout)
## Supported Labels
```python
["caption", "chart", "image", "image_caption", "table", "table_caption", "text", "title"]
```

## How to use
- Install library

`pip install yolov5==7.0.5 torch`

## Load model and perform prediction
```python
import yolov5
from PIL import Image

model = yolov5.load(models_id)

model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://huggingface.co/spaces/hermanshid/yolo-layout-detector-space/raw/main/test_images/example1.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()

```