|
|
|
from istftnet import Decoder |
|
from munch import Munch |
|
from plbert import load_plbert |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
import numpy as np |
|
import os |
|
import os.path as osp |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class LearnedDownSample(nn.Module): |
|
def __init__(self, layer_type, dim_in): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
if self.layer_type == 'none': |
|
self.conv = nn.Identity() |
|
elif self.layer_type == 'timepreserve': |
|
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) |
|
elif self.layer_type == 'half': |
|
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
class LearnedUpSample(nn.Module): |
|
def __init__(self, layer_type, dim_in): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
if self.layer_type == 'none': |
|
self.conv = nn.Identity() |
|
elif self.layer_type == 'timepreserve': |
|
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) |
|
elif self.layer_type == 'half': |
|
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) |
|
else: |
|
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
class DownSample(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
elif self.layer_type == 'timepreserve': |
|
return F.avg_pool2d(x, (2, 1)) |
|
elif self.layer_type == 'half': |
|
if x.shape[-1] % 2 != 0: |
|
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) |
|
return F.avg_pool2d(x, 2) |
|
else: |
|
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
|
|
class UpSample(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
elif self.layer_type == 'timepreserve': |
|
return F.interpolate(x, scale_factor=(2, 1), mode='nearest') |
|
elif self.layer_type == 'half': |
|
return F.interpolate(x, scale_factor=2, mode='nearest') |
|
else: |
|
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) |
|
|
|
|
|
class ResBlk(nn.Module): |
|
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), |
|
normalize=False, downsample='none'): |
|
super().__init__() |
|
self.actv = actv |
|
self.normalize = normalize |
|
self.downsample = DownSample(downsample) |
|
self.downsample_res = LearnedDownSample(downsample, dim_in) |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out) |
|
|
|
def _build_weights(self, dim_in, dim_out): |
|
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) |
|
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) |
|
if self.normalize: |
|
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) |
|
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) |
|
if self.learned_sc: |
|
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def _shortcut(self, x): |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
if self.downsample: |
|
x = self.downsample(x) |
|
return x |
|
|
|
def _residual(self, x): |
|
if self.normalize: |
|
x = self.norm1(x) |
|
x = self.actv(x) |
|
x = self.conv1(x) |
|
x = self.downsample_res(x) |
|
if self.normalize: |
|
x = self.norm2(x) |
|
x = self.actv(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._shortcut(x) + self._residual(x) |
|
return x / np.sqrt(2) |
|
|
|
class LinearNorm(torch.nn.Module): |
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): |
|
super(LinearNorm, self).__init__() |
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) |
|
|
|
torch.nn.init.xavier_uniform_( |
|
self.linear_layer.weight, |
|
gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
def forward(self, x): |
|
return self.linear_layer(x) |
|
|
|
class Discriminator2d(nn.Module): |
|
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): |
|
super().__init__() |
|
blocks = [] |
|
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] |
|
|
|
for lid in range(repeat_num): |
|
dim_out = min(dim_in*2, max_conv_dim) |
|
blocks += [ResBlk(dim_in, dim_out, downsample='half')] |
|
dim_in = dim_out |
|
|
|
blocks += [nn.LeakyReLU(0.2)] |
|
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] |
|
blocks += [nn.LeakyReLU(0.2)] |
|
blocks += [nn.AdaptiveAvgPool2d(1)] |
|
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] |
|
self.main = nn.Sequential(*blocks) |
|
|
|
def get_feature(self, x): |
|
features = [] |
|
for l in self.main: |
|
x = l(x) |
|
features.append(x) |
|
out = features[-1] |
|
out = out.view(out.size(0), -1) |
|
return out, features |
|
|
|
def forward(self, x): |
|
out, features = self.get_feature(x) |
|
out = out.squeeze() |
|
return out, features |
|
|
|
class ResBlk1d(nn.Module): |
|
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), |
|
normalize=False, downsample='none', dropout_p=0.2): |
|
super().__init__() |
|
self.actv = actv |
|
self.normalize = normalize |
|
self.downsample_type = downsample |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out) |
|
self.dropout_p = dropout_p |
|
|
|
if self.downsample_type == 'none': |
|
self.pool = nn.Identity() |
|
else: |
|
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) |
|
|
|
def _build_weights(self, dim_in, dim_out): |
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) |
|
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) |
|
if self.normalize: |
|
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) |
|
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) |
|
if self.learned_sc: |
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def downsample(self, x): |
|
if self.downsample_type == 'none': |
|
return x |
|
else: |
|
if x.shape[-1] % 2 != 0: |
|
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) |
|
return F.avg_pool1d(x, 2) |
|
|
|
def _shortcut(self, x): |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
x = self.downsample(x) |
|
return x |
|
|
|
def _residual(self, x): |
|
if self.normalize: |
|
x = self.norm1(x) |
|
x = self.actv(x) |
|
x = F.dropout(x, p=self.dropout_p, training=self.training) |
|
|
|
x = self.conv1(x) |
|
x = self.pool(x) |
|
if self.normalize: |
|
x = self.norm2(x) |
|
|
|
x = self.actv(x) |
|
x = F.dropout(x, p=self.dropout_p, training=self.training) |
|
|
|
x = self.conv2(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self._shortcut(x) + self._residual(x) |
|
return x / np.sqrt(2) |
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, -1) |
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) |
|
return x.transpose(1, -1) |
|
|
|
class TextEncoder(nn.Module): |
|
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): |
|
super().__init__() |
|
self.embedding = nn.Embedding(n_symbols, channels) |
|
|
|
padding = (kernel_size - 1) // 2 |
|
self.cnn = nn.ModuleList() |
|
for _ in range(depth): |
|
self.cnn.append(nn.Sequential( |
|
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), |
|
LayerNorm(channels), |
|
actv, |
|
nn.Dropout(0.2), |
|
)) |
|
|
|
|
|
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) |
|
|
|
def forward(self, x, input_lengths, m): |
|
x = self.embedding(x) |
|
x = x.transpose(1, 2) |
|
m = m.to(input_lengths.device).unsqueeze(1) |
|
x.masked_fill_(m, 0.0) |
|
|
|
for c in self.cnn: |
|
x = c(x) |
|
x.masked_fill_(m, 0.0) |
|
|
|
x = x.transpose(1, 2) |
|
|
|
input_lengths = input_lengths.cpu().numpy() |
|
x = nn.utils.rnn.pack_padded_sequence( |
|
x, input_lengths, batch_first=True, enforce_sorted=False) |
|
|
|
self.lstm.flatten_parameters() |
|
x, _ = self.lstm(x) |
|
x, _ = nn.utils.rnn.pad_packed_sequence( |
|
x, batch_first=True) |
|
|
|
x = x.transpose(-1, -2) |
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) |
|
|
|
x_pad[:, :, :x.shape[-1]] = x |
|
x = x_pad.to(x.device) |
|
|
|
x.masked_fill_(m, 0.0) |
|
|
|
return x |
|
|
|
def inference(self, x): |
|
x = self.embedding(x) |
|
x = x.transpose(1, 2) |
|
x = self.cnn(x) |
|
x = x.transpose(1, 2) |
|
self.lstm.flatten_parameters() |
|
x, _ = self.lstm(x) |
|
return x |
|
|
|
def length_to_mask(self, lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
|
|
|
|
class AdaIN1d(nn.Module): |
|
def __init__(self, style_dim, num_features): |
|
super().__init__() |
|
self.norm = nn.InstanceNorm1d(num_features, affine=False) |
|
self.fc = nn.Linear(style_dim, num_features*2) |
|
|
|
def forward(self, x, s): |
|
h = self.fc(s) |
|
h = h.view(h.size(0), h.size(1), 1) |
|
gamma, beta = torch.chunk(h, chunks=2, dim=1) |
|
return (1 + gamma) * self.norm(x) + beta |
|
|
|
class UpSample1d(nn.Module): |
|
def __init__(self, layer_type): |
|
super().__init__() |
|
self.layer_type = layer_type |
|
|
|
def forward(self, x): |
|
if self.layer_type == 'none': |
|
return x |
|
else: |
|
return F.interpolate(x, scale_factor=2, mode='nearest') |
|
|
|
class AdainResBlk1d(nn.Module): |
|
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), |
|
upsample='none', dropout_p=0.0): |
|
super().__init__() |
|
self.actv = actv |
|
self.upsample_type = upsample |
|
self.upsample = UpSample1d(upsample) |
|
self.learned_sc = dim_in != dim_out |
|
self._build_weights(dim_in, dim_out, style_dim) |
|
self.dropout = nn.Dropout(dropout_p) |
|
|
|
if upsample == 'none': |
|
self.pool = nn.Identity() |
|
else: |
|
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) |
|
|
|
|
|
def _build_weights(self, dim_in, dim_out, style_dim): |
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) |
|
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) |
|
self.norm1 = AdaIN1d(style_dim, dim_in) |
|
self.norm2 = AdaIN1d(style_dim, dim_out) |
|
if self.learned_sc: |
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) |
|
|
|
def _shortcut(self, x): |
|
x = self.upsample(x) |
|
if self.learned_sc: |
|
x = self.conv1x1(x) |
|
return x |
|
|
|
def _residual(self, x, s): |
|
x = self.norm1(x, s) |
|
x = self.actv(x) |
|
x = self.pool(x) |
|
x = self.conv1(self.dropout(x)) |
|
x = self.norm2(x, s) |
|
x = self.actv(x) |
|
x = self.conv2(self.dropout(x)) |
|
return x |
|
|
|
def forward(self, x, s): |
|
out = self._residual(x, s) |
|
out = (out + self._shortcut(x)) / np.sqrt(2) |
|
return out |
|
|
|
class AdaLayerNorm(nn.Module): |
|
def __init__(self, style_dim, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.fc = nn.Linear(style_dim, channels*2) |
|
|
|
def forward(self, x, s): |
|
x = x.transpose(-1, -2) |
|
x = x.transpose(1, -1) |
|
|
|
h = self.fc(s) |
|
h = h.view(h.size(0), h.size(1), 1) |
|
gamma, beta = torch.chunk(h, chunks=2, dim=1) |
|
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) |
|
|
|
|
|
x = F.layer_norm(x, (self.channels,), eps=self.eps) |
|
x = (1 + gamma) * x + beta |
|
return x.transpose(1, -1).transpose(-1, -2) |
|
|
|
class ProsodyPredictor(nn.Module): |
|
|
|
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): |
|
super().__init__() |
|
|
|
self.text_encoder = DurationEncoder(sty_dim=style_dim, |
|
d_model=d_hid, |
|
nlayers=nlayers, |
|
dropout=dropout) |
|
|
|
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) |
|
self.duration_proj = LinearNorm(d_hid, max_dur) |
|
|
|
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) |
|
self.F0 = nn.ModuleList() |
|
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) |
|
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) |
|
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) |
|
|
|
self.N = nn.ModuleList() |
|
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) |
|
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) |
|
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) |
|
|
|
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) |
|
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) |
|
|
|
|
|
def forward(self, texts, style, text_lengths, alignment, m): |
|
d = self.text_encoder(texts, style, text_lengths, m) |
|
|
|
batch_size = d.shape[0] |
|
text_size = d.shape[1] |
|
|
|
|
|
input_lengths = text_lengths.cpu().numpy() |
|
x = nn.utils.rnn.pack_padded_sequence( |
|
d, input_lengths, batch_first=True, enforce_sorted=False) |
|
|
|
m = m.to(text_lengths.device).unsqueeze(1) |
|
|
|
self.lstm.flatten_parameters() |
|
x, _ = self.lstm(x) |
|
x, _ = nn.utils.rnn.pad_packed_sequence( |
|
x, batch_first=True) |
|
|
|
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) |
|
|
|
x_pad[:, :x.shape[1], :] = x |
|
x = x_pad.to(x.device) |
|
|
|
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) |
|
|
|
en = (d.transpose(-1, -2) @ alignment) |
|
|
|
return duration.squeeze(-1), en |
|
|
|
def F0Ntrain(self, x, s): |
|
x, _ = self.shared(x.transpose(-1, -2)) |
|
|
|
F0 = x.transpose(-1, -2) |
|
for block in self.F0: |
|
F0 = block(F0, s) |
|
F0 = self.F0_proj(F0) |
|
|
|
N = x.transpose(-1, -2) |
|
for block in self.N: |
|
N = block(N, s) |
|
N = self.N_proj(N) |
|
|
|
return F0.squeeze(1), N.squeeze(1) |
|
|
|
def length_to_mask(self, lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
class DurationEncoder(nn.Module): |
|
|
|
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): |
|
super().__init__() |
|
self.lstms = nn.ModuleList() |
|
for _ in range(nlayers): |
|
self.lstms.append(nn.LSTM(d_model + sty_dim, |
|
d_model // 2, |
|
num_layers=1, |
|
batch_first=True, |
|
bidirectional=True, |
|
dropout=dropout)) |
|
self.lstms.append(AdaLayerNorm(sty_dim, d_model)) |
|
|
|
|
|
self.dropout = dropout |
|
self.d_model = d_model |
|
self.sty_dim = sty_dim |
|
|
|
def forward(self, x, style, text_lengths, m): |
|
masks = m.to(text_lengths.device) |
|
|
|
x = x.permute(2, 0, 1) |
|
s = style.expand(x.shape[0], x.shape[1], -1) |
|
x = torch.cat([x, s], axis=-1) |
|
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) |
|
|
|
x = x.transpose(0, 1) |
|
input_lengths = text_lengths.cpu().numpy() |
|
x = x.transpose(-1, -2) |
|
|
|
for block in self.lstms: |
|
if isinstance(block, AdaLayerNorm): |
|
x = block(x.transpose(-1, -2), style).transpose(-1, -2) |
|
x = torch.cat([x, s.permute(1, -1, 0)], axis=1) |
|
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) |
|
else: |
|
x = x.transpose(-1, -2) |
|
x = nn.utils.rnn.pack_padded_sequence( |
|
x, input_lengths, batch_first=True, enforce_sorted=False) |
|
block.flatten_parameters() |
|
x, _ = block(x) |
|
x, _ = nn.utils.rnn.pad_packed_sequence( |
|
x, batch_first=True) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = x.transpose(-1, -2) |
|
|
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) |
|
|
|
x_pad[:, :, :x.shape[-1]] = x |
|
x = x_pad.to(x.device) |
|
|
|
return x.transpose(-1, -2) |
|
|
|
def inference(self, x, style): |
|
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model) |
|
style = style.expand(x.shape[0], x.shape[1], -1) |
|
x = torch.cat([x, style], axis=-1) |
|
src = self.pos_encoder(x) |
|
output = self.transformer_encoder(src).transpose(0, 1) |
|
return output |
|
|
|
def length_to_mask(self, lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
|
|
def recursive_munch(d): |
|
if isinstance(d, dict): |
|
return Munch((k, recursive_munch(v)) for k, v in d.items()) |
|
elif isinstance(d, list): |
|
return [recursive_munch(v) for v in d] |
|
else: |
|
return d |
|
|
|
def build_model(path, device): |
|
args = recursive_munch(dict( |
|
decoder=dict( |
|
type='istftnet', upsample_kernel_sizes=[20, 12], upsample_rates=[10, 6], gen_istft_hop_size=5, gen_istft_n_fft=20, |
|
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes=[3, 7, 11], upsample_initial_channel=512, |
|
), |
|
dim_in=64, dropout=0.2, hidden_dim=512, max_conv_dim=512, max_dur=50, |
|
multispeaker=True, n_layer=3, n_mels=80, n_token=178, style_dim=128 |
|
)) |
|
assert args.decoder.type == 'istftnet', 'Decoder type unknown' |
|
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, |
|
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, |
|
upsample_rates = args.decoder.upsample_rates, |
|
upsample_initial_channel=args.decoder.upsample_initial_channel, |
|
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, |
|
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, |
|
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) |
|
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token) |
|
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout) |
|
bert = load_plbert() |
|
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim) |
|
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]: |
|
for child in parent.children(): |
|
if isinstance(child, nn.RNNBase): |
|
child.flatten_parameters() |
|
model = Munch( |
|
bert=bert.to(device).eval(), |
|
bert_encoder=bert_encoder.to(device).eval(), |
|
predictor=predictor.to(device).eval(), |
|
decoder=decoder.to(device).eval(), |
|
text_encoder=text_encoder.to(device).eval(), |
|
) |
|
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items(): |
|
assert key in model, key |
|
try: |
|
model[key].load_state_dict(state_dict) |
|
except: |
|
state_dict = {k[7:]: v for k, v in state_dict.items()} |
|
model[key].load_state_dict(state_dict, strict=False) |
|
return model |
|
|