Upload 3 files
Browse files
README.md
CHANGED
@@ -31,6 +31,7 @@ You can find a hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingf
|
|
31 |
The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
|
32 |
```py
|
33 |
# 1️⃣ Install dependencies silently
|
|
|
34 |
!git clone https://huggingface.co/hexgrad/Kokoro-82M
|
35 |
%cd Kokoro-82M
|
36 |
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
|
|
|
31 |
The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
|
32 |
```py
|
33 |
# 1️⃣ Install dependencies silently
|
34 |
+
!git lfs install
|
35 |
!git clone https://huggingface.co/hexgrad/Kokoro-82M
|
36 |
%cd Kokoro-82M
|
37 |
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
|
models.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
-
from istftnet import Decoder
|
3 |
from munch import Munch
|
4 |
from pathlib import Path
|
5 |
from plbert import load_plbert
|
@@ -12,118 +12,6 @@ import torch
|
|
12 |
import torch.nn as nn
|
13 |
import torch.nn.functional as F
|
14 |
|
15 |
-
class LearnedDownSample(nn.Module):
|
16 |
-
def __init__(self, layer_type, dim_in):
|
17 |
-
super().__init__()
|
18 |
-
self.layer_type = layer_type
|
19 |
-
|
20 |
-
if self.layer_type == 'none':
|
21 |
-
self.conv = nn.Identity()
|
22 |
-
elif self.layer_type == 'timepreserve':
|
23 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
24 |
-
elif self.layer_type == 'half':
|
25 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
26 |
-
else:
|
27 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
return self.conv(x)
|
31 |
-
|
32 |
-
class LearnedUpSample(nn.Module):
|
33 |
-
def __init__(self, layer_type, dim_in):
|
34 |
-
super().__init__()
|
35 |
-
self.layer_type = layer_type
|
36 |
-
|
37 |
-
if self.layer_type == 'none':
|
38 |
-
self.conv = nn.Identity()
|
39 |
-
elif self.layer_type == 'timepreserve':
|
40 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
41 |
-
elif self.layer_type == 'half':
|
42 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
43 |
-
else:
|
44 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
45 |
-
|
46 |
-
|
47 |
-
def forward(self, x):
|
48 |
-
return self.conv(x)
|
49 |
-
|
50 |
-
class DownSample(nn.Module):
|
51 |
-
def __init__(self, layer_type):
|
52 |
-
super().__init__()
|
53 |
-
self.layer_type = layer_type
|
54 |
-
|
55 |
-
def forward(self, x):
|
56 |
-
if self.layer_type == 'none':
|
57 |
-
return x
|
58 |
-
elif self.layer_type == 'timepreserve':
|
59 |
-
return F.avg_pool2d(x, (2, 1))
|
60 |
-
elif self.layer_type == 'half':
|
61 |
-
if x.shape[-1] % 2 != 0:
|
62 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
63 |
-
return F.avg_pool2d(x, 2)
|
64 |
-
else:
|
65 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
66 |
-
|
67 |
-
|
68 |
-
class UpSample(nn.Module):
|
69 |
-
def __init__(self, layer_type):
|
70 |
-
super().__init__()
|
71 |
-
self.layer_type = layer_type
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
if self.layer_type == 'none':
|
75 |
-
return x
|
76 |
-
elif self.layer_type == 'timepreserve':
|
77 |
-
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
78 |
-
elif self.layer_type == 'half':
|
79 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
80 |
-
else:
|
81 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
82 |
-
|
83 |
-
|
84 |
-
class ResBlk(nn.Module):
|
85 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
86 |
-
normalize=False, downsample='none'):
|
87 |
-
super().__init__()
|
88 |
-
self.actv = actv
|
89 |
-
self.normalize = normalize
|
90 |
-
self.downsample = DownSample(downsample)
|
91 |
-
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
92 |
-
self.learned_sc = dim_in != dim_out
|
93 |
-
self._build_weights(dim_in, dim_out)
|
94 |
-
|
95 |
-
def _build_weights(self, dim_in, dim_out):
|
96 |
-
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
97 |
-
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
98 |
-
if self.normalize:
|
99 |
-
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
100 |
-
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
101 |
-
if self.learned_sc:
|
102 |
-
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
103 |
-
|
104 |
-
def _shortcut(self, x):
|
105 |
-
if self.learned_sc:
|
106 |
-
x = self.conv1x1(x)
|
107 |
-
if self.downsample:
|
108 |
-
x = self.downsample(x)
|
109 |
-
return x
|
110 |
-
|
111 |
-
def _residual(self, x):
|
112 |
-
if self.normalize:
|
113 |
-
x = self.norm1(x)
|
114 |
-
x = self.actv(x)
|
115 |
-
x = self.conv1(x)
|
116 |
-
x = self.downsample_res(x)
|
117 |
-
if self.normalize:
|
118 |
-
x = self.norm2(x)
|
119 |
-
x = self.actv(x)
|
120 |
-
x = self.conv2(x)
|
121 |
-
return x
|
122 |
-
|
123 |
-
def forward(self, x):
|
124 |
-
x = self._shortcut(x) + self._residual(x)
|
125 |
-
return x / np.sqrt(2) # unit variance
|
126 |
-
|
127 |
class LinearNorm(torch.nn.Module):
|
128 |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
129 |
super(LinearNorm, self).__init__()
|
@@ -136,98 +24,6 @@ class LinearNorm(torch.nn.Module):
|
|
136 |
def forward(self, x):
|
137 |
return self.linear_layer(x)
|
138 |
|
139 |
-
class Discriminator2d(nn.Module):
|
140 |
-
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
|
141 |
-
super().__init__()
|
142 |
-
blocks = []
|
143 |
-
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
144 |
-
|
145 |
-
for lid in range(repeat_num):
|
146 |
-
dim_out = min(dim_in*2, max_conv_dim)
|
147 |
-
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
148 |
-
dim_in = dim_out
|
149 |
-
|
150 |
-
blocks += [nn.LeakyReLU(0.2)]
|
151 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
152 |
-
blocks += [nn.LeakyReLU(0.2)]
|
153 |
-
blocks += [nn.AdaptiveAvgPool2d(1)]
|
154 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
|
155 |
-
self.main = nn.Sequential(*blocks)
|
156 |
-
|
157 |
-
def get_feature(self, x):
|
158 |
-
features = []
|
159 |
-
for l in self.main:
|
160 |
-
x = l(x)
|
161 |
-
features.append(x)
|
162 |
-
out = features[-1]
|
163 |
-
out = out.view(out.size(0), -1) # (batch, num_domains)
|
164 |
-
return out, features
|
165 |
-
|
166 |
-
def forward(self, x):
|
167 |
-
out, features = self.get_feature(x)
|
168 |
-
out = out.squeeze() # (batch)
|
169 |
-
return out, features
|
170 |
-
|
171 |
-
class ResBlk1d(nn.Module):
|
172 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
173 |
-
normalize=False, downsample='none', dropout_p=0.2):
|
174 |
-
super().__init__()
|
175 |
-
self.actv = actv
|
176 |
-
self.normalize = normalize
|
177 |
-
self.downsample_type = downsample
|
178 |
-
self.learned_sc = dim_in != dim_out
|
179 |
-
self._build_weights(dim_in, dim_out)
|
180 |
-
self.dropout_p = dropout_p
|
181 |
-
|
182 |
-
if self.downsample_type == 'none':
|
183 |
-
self.pool = nn.Identity()
|
184 |
-
else:
|
185 |
-
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
186 |
-
|
187 |
-
def _build_weights(self, dim_in, dim_out):
|
188 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
189 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
190 |
-
if self.normalize:
|
191 |
-
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
192 |
-
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
193 |
-
if self.learned_sc:
|
194 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
195 |
-
|
196 |
-
def downsample(self, x):
|
197 |
-
if self.downsample_type == 'none':
|
198 |
-
return x
|
199 |
-
else:
|
200 |
-
if x.shape[-1] % 2 != 0:
|
201 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
202 |
-
return F.avg_pool1d(x, 2)
|
203 |
-
|
204 |
-
def _shortcut(self, x):
|
205 |
-
if self.learned_sc:
|
206 |
-
x = self.conv1x1(x)
|
207 |
-
x = self.downsample(x)
|
208 |
-
return x
|
209 |
-
|
210 |
-
def _residual(self, x):
|
211 |
-
if self.normalize:
|
212 |
-
x = self.norm1(x)
|
213 |
-
x = self.actv(x)
|
214 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
215 |
-
|
216 |
-
x = self.conv1(x)
|
217 |
-
x = self.pool(x)
|
218 |
-
if self.normalize:
|
219 |
-
x = self.norm2(x)
|
220 |
-
|
221 |
-
x = self.actv(x)
|
222 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
223 |
-
|
224 |
-
x = self.conv2(x)
|
225 |
-
return x
|
226 |
-
|
227 |
-
def forward(self, x):
|
228 |
-
x = self._shortcut(x) + self._residual(x)
|
229 |
-
return x / np.sqrt(2) # unit variance
|
230 |
-
|
231 |
class LayerNorm(nn.Module):
|
232 |
def __init__(self, channels, eps=1e-5):
|
233 |
super().__init__()
|
@@ -306,19 +102,6 @@ class TextEncoder(nn.Module):
|
|
306 |
return mask
|
307 |
|
308 |
|
309 |
-
|
310 |
-
class AdaIN1d(nn.Module):
|
311 |
-
def __init__(self, style_dim, num_features):
|
312 |
-
super().__init__()
|
313 |
-
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
314 |
-
self.fc = nn.Linear(style_dim, num_features*2)
|
315 |
-
|
316 |
-
def forward(self, x, s):
|
317 |
-
h = self.fc(s)
|
318 |
-
h = h.view(h.size(0), h.size(1), 1)
|
319 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
320 |
-
return (1 + gamma) * self.norm(x) + beta
|
321 |
-
|
322 |
class UpSample1d(nn.Module):
|
323 |
def __init__(self, layer_type):
|
324 |
super().__init__()
|
@@ -474,7 +257,7 @@ class ProsodyPredictor(nn.Module):
|
|
474 |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
475 |
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
476 |
return mask
|
477 |
-
|
478 |
class DurationEncoder(nn.Module):
|
479 |
|
480 |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
|
|
1 |
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
2 |
+
from istftnet import AdaIN1d, Decoder
|
3 |
from munch import Munch
|
4 |
from pathlib import Path
|
5 |
from plbert import load_plbert
|
|
|
12 |
import torch.nn as nn
|
13 |
import torch.nn.functional as F
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
class LinearNorm(torch.nn.Module):
|
16 |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
17 |
super(LinearNorm, self).__init__()
|
|
|
24 |
def forward(self, x):
|
25 |
return self.linear_layer(x)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class LayerNorm(nn.Module):
|
28 |
def __init__(self, channels, eps=1e-5):
|
29 |
super().__init__()
|
|
|
102 |
return mask
|
103 |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
class UpSample1d(nn.Module):
|
106 |
def __init__(self, layer_type):
|
107 |
super().__init__()
|
|
|
257 |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
258 |
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
259 |
return mask
|
260 |
+
|
261 |
class DurationEncoder(nn.Module):
|
262 |
|
263 |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|