--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1404 --- # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4980 - Rouge1: 0.1404 - Rouge2: 0.052 - Rougel: 0.1172 - Rougelsum: 0.1176 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7839 | 0.1277 | 0.0381 | 0.1076 | 0.1081 | 19.0 | | No log | 2.0 | 124 | 2.5780 | 0.1333 | 0.0433 | 0.1114 | 0.1118 | 19.0 | | No log | 3.0 | 186 | 2.5132 | 0.1394 | 0.0518 | 0.1168 | 0.1171 | 19.0 | | No log | 4.0 | 248 | 2.4980 | 0.1404 | 0.052 | 0.1172 | 0.1176 | 19.0 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0