--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - fjd_dataset model-index: - name: xlmr-lstm-crf-resume-ner4 results: [] --- # xlmr-lstm-crf-resume-ner4 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the fjd_dataset dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1764 - eval_precision: 0.5811 - eval_recall: 0.5602 - eval_f1: 0.5705 - eval_accuracy: 0.9501 - eval_runtime: 52.6822 - eval_samples_per_second: 94.415 - eval_steps_per_second: 2.961 - epoch: 4.0 - step: 3680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1