import torch from transformers import Trainer, TrainingArguments from my_custom_model import MyCustomModel # import your custom model class here from my_dataset import MyDataset # import your dataset class here # Instantiate the tokenizer tokenizer = ... # define your tokenizer here # Load the dataset and preprocess it train_dataset = MyDataset(...) # define your training dataset here val_dataset = MyDataset(...) # define your validation dataset here # Define your custom model and the training arguments model = MyCustomModel(...) # define your custom model here training_args = TrainingArguments( output_dir='./results', evaluation_strategy='epoch', learning_rate=2e-4, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=1, weight_decay=0.01, ) # Define the trainer and train the model trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) trainer.train() # Save the trained model model_path = './trained_model' model.save_pretrained(model_path) # Load the trained model model = MyCustomModel.from_pretrained(model_path) # Define your inference function def answer_question(input_text): # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate the answer answer_ids = model.generate(input_ids) answer = tokenizer.decode(answer_ids[0], skip_special_tokens=True) return answer # Test the model with an example input input_text = "Your input text here" answer = answer_question(input_text) print(answer)