--- library_name: peft license: apache-2.0 datasets: - dltdojo/ecommerce-faq-chatbot-dataset language: - en pipeline_tag: text-generation tags: - text-generation-inference --- # Falcon 7B LLM Fine Tune Model ## Model description This model is a fine-tuned version of the `tiiuae/falcon-7b` model using the QLoRa library and the PEFT library. It was fine-tuned on the [Ecommerce-FAQ-Chatbot-Dataset](https://kaggle.com/datasets/saadmakhdoom/ecommerce-faq-chatbot-dataset) from Kaggle. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch model_id = "hipnologo/Falcon-7B-FineTune-Chatbot" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # generate text input_prompt = "Hello, Bot!" input_ids = tokenizer.encode(input_prompt, return_tensors='pt') output = model.generate(input_ids) output_text = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) ``` ## Training procedure The model was fine-tuned on the [Ecommerce-FAQ-Chatbot-Dataset](https://kaggle.com/datasets/saadmakhdoom/ecommerce-faq-chatbot-dataset) using the `bitsandbytes` quantization config: - load_in_8bit: `False` - load_in_4bit: `True` - llm_int8_threshold: `6.0` - llm_int8_skip_modules: `None` - llm_int8_enable_fp32_cpu_offload: `False` - llm_int8_has_fp16_weight: `False` - bnb_4bit_quant_type: `nf4` - bnb_4bit_use_double_quant: `True` - bnb_4bit_compute_dtype: `bfloat16` ### Framework versions - PEFT 0.4.0.dev0 ## Evaluation results The model was trained for 80 steps, with the training loss decreasing from 0.184 to nearly 0. The final training loss was `0.03094411873175886`. - Trainable params: 2359296 - All params: 3611104128 - Trainable%: 0.06533447711203746 ## License This model is licensed under Apache 2.0. Please see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for more information.