|
import os
|
|
import yaml
|
|
import json
|
|
import argparse
|
|
from diambra.arena import Roles, SpaceTypes, load_settings_flat_dict
|
|
from diambra.arena.stable_baselines3.make_sb3_env import make_sb3_env, EnvironmentSettings, WrappersSettings
|
|
from stable_baselines3 import PPO
|
|
|
|
def main(cfg_file, trained_model):
|
|
|
|
yaml_file = open(cfg_file)
|
|
params = yaml.load(yaml_file, Loader=yaml.FullLoader)
|
|
print("Config parameters = ", json.dumps(params, sort_keys=True, indent=4))
|
|
yaml_file.close()
|
|
|
|
base_path = os.path.dirname(os.path.abspath(__file__))
|
|
model_folder = os.path.join(base_path, params["folders"]["parent_dir"], params["settings"]["game_id"],
|
|
params["folders"]["model_name"], "model")
|
|
|
|
|
|
params["settings"]["action_space"] = SpaceTypes.DISCRETE if params["settings"]["action_space"] == "discrete" else SpaceTypes.MULTI_DISCRETE
|
|
settings = load_settings_flat_dict(EnvironmentSettings, params["settings"])
|
|
settings.role = Roles.P1
|
|
|
|
|
|
wrappers_settings = load_settings_flat_dict(WrappersSettings, params["wrappers_settings"])
|
|
wrappers_settings.normalize_reward = False
|
|
|
|
|
|
env, num_envs = make_sb3_env(settings.game_id, settings, wrappers_settings, no_vec=True)
|
|
print("Activated {} environment(s)".format(num_envs))
|
|
|
|
|
|
model_path = os.path.join(model_folder, trained_model)
|
|
agent = PPO.load(model_path)
|
|
|
|
|
|
print("Policy architecture:")
|
|
print(agent.policy)
|
|
|
|
obs, info = env.reset()
|
|
|
|
while True:
|
|
action, _ = agent.predict(obs, deterministic=False)
|
|
|
|
obs, reward, terminated, truncated, info = env.step(action.tolist())
|
|
|
|
if terminated or truncated:
|
|
obs, info = env.reset()
|
|
if info["env_done"]:
|
|
break
|
|
|
|
|
|
env.close()
|
|
|
|
|
|
return 0
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--cfgFile", type=str, required=True, help="Configuration file")
|
|
parser.add_argument("--trainedModel", type=str, default="model", help="Model checkpoint")
|
|
opt = parser.parse_args()
|
|
print(opt)
|
|
|
|
main(opt.cfgFile, opt.trainedModel) |