Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,100 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
license: apache-2.0
|
5 |
library_name: transformers
|
6 |
+
datasets:
|
7 |
+
- hivaze/ru-AAQG-QA-QG
|
8 |
+
pipeline_tag: text2text-generation
|
9 |
---
|
10 |
|
11 |
+
## Description
|
12 |
+
|
13 |
+
This is **ai-forever/FRED-T5-large** model trained on **Question-Answering**, **Question-Generation** and **Answer-Aware Question Generation** tasks on russian dataset (**hivaze/ru-AAQG-QA-QG**)
|
14 |
+
|
15 |
+
### Prompts
|
16 |
+
|
17 |
+
```python
|
18 |
+
AAQG_PROMPT = "Сгенерируй вопрос по тексту, используя известный ответ. Текст: '{context}'. Ответ: '{answer}'."
|
19 |
+
QG_PROMPT = "Сгенерируй вопрос по тексту. Текст: '{context}'."
|
20 |
+
QA_PROMPT = "Сгенерируй ответ на вопрос по тексту. Текст: '{context}'. Вопрос: '{question}'."
|
21 |
+
```
|
22 |
+
|
23 |
+
### Examples and code
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
27 |
+
from functools import partial
|
28 |
+
|
29 |
+
saved_checkpoint = 'hivaze/AAQG-QA-QG-FRED-T5-large'
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(saved_checkpoint)
|
31 |
+
model = T5ForConditionalGeneration.from_pretrained(saved_checkpoint).cuda()
|
32 |
+
|
33 |
+
def generate_text(prompt, tokenizer, model, n=1, temperature=0.8, num_beams=3):
|
34 |
+
encoded_input = tokenizer.encode_plus(prompt, return_tensors='pt')
|
35 |
+
encoded_input = {k: v.to(model.device) for k, v in encoded_input.items()}
|
36 |
+
|
37 |
+
resulted_tokens = model.generate(**encoded_input,
|
38 |
+
max_new_tokens=64,
|
39 |
+
do_sample=True,
|
40 |
+
num_beams=num_beams,
|
41 |
+
num_return_sequences=n,
|
42 |
+
temperature=temperature,
|
43 |
+
top_p=0.9,
|
44 |
+
top_k=50)
|
45 |
+
resulted_texts = tokenizer.batch_decode(resulted_tokens, skip_special_tokens=True)
|
46 |
+
|
47 |
+
return resulted_texts
|
48 |
+
|
49 |
+
generate_text = partial(generate_text, tokenizer=tokenizer, model=model)
|
50 |
+
|
51 |
+
test_context = "Путешественник Федор Конюхов и пилот Игорь Потапкин установили мировой рекорд высоты полета на паралёте, поднявшись на высоту 4728 метров — сайт Конюхова"
|
52 |
+
```
|
53 |
+
|
54 |
+
#### AAQG
|
55 |
+
```python
|
56 |
+
generate_text(AAQG_PROMPT.format(
|
57 |
+
context=test_context,
|
58 |
+
answer='на паралёте'
|
59 |
+
), n=1)
|
60 |
+
```
|
61 |
+
> "На чём установили мировой рекорд высоты полета Федор Конюхов и пилот Игорь Потапкин?"
|
62 |
+
|
63 |
+
|
64 |
+
```python
|
65 |
+
generate_text(AAQG_PROMPT.format(
|
66 |
+
context=test_context,
|
67 |
+
answer='рекорд высоты полета'
|
68 |
+
), n=1)
|
69 |
+
```
|
70 |
+
> "Что установили Конюхов и Потапкин?"
|
71 |
+
|
72 |
+
|
73 |
+
#### QA
|
74 |
+
```python
|
75 |
+
generate_text(QA_PROMPT.format(
|
76 |
+
context=test_context,
|
77 |
+
question='Что установили путешественник Федор Конюхов и пилот Игорь Потапкин?'
|
78 |
+
), n=1)
|
79 |
+
```
|
80 |
+
> "мировой рекорд высоты полета на паралёте, поднявшись на высоту 4728 метров — сайт Конюхова"
|
81 |
+
|
82 |
+
#### QG
|
83 |
+
```python
|
84 |
+
generate_text(QG_PROMPT.format(context=test_context), n=1)
|
85 |
+
```
|
86 |
+
> "Кто установил мировой рекорд высоты полета на паралёте, поднявшись на высоту 4728 метров?"
|
87 |
+
|
88 |
+
## Metrics
|
89 |
+
|
90 |
+
| Step | Training Loss | Validation Loss | Sbleu | Chr F | Rouge1 | Rouge2 | Rougel |
|
91 |
+
|------|---------------|-----------------|-------|-------|--------|--------|--------|
|
92 |
+
| 500 | 1.183100 | 1.188049 | 40.114700 | 62.147000 | 0.104600 | 0.034500 | 0.104300 |
|
93 |
+
| 1000 | 1.193000 | 1.125300 | 40.722300 | 62.661400 | 0.104700 | 0.033900 | 0.104300 |
|
94 |
+
| 1500 | 1.114300 | 1.097496 | 41.416600 | 63.060300 | 0.106100 | 0.033800 | 0.105800 |
|
95 |
+
| 2000 | 1.081300 | 1.080900 | 41.600200 | 63.260500 | 0.106200 | 0.033700 | 0.105900 |
|
96 |
+
| 2500 | 1.076900 | 1.070221 | 41.722300 | 63.315300 | 0.106300 | 0.034100 | 0.106000 |
|
97 |
+
| 3000 | 1.125600 | 1.062671 | 41.744500 | 63.409400 | 0.106400 | 0.034200 | 0.106200 |
|
98 |
+
|
99 |
+
## Authors
|
100 |
+
- Sergei Bratchikov (https://t.me/nlpwanderer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|