hkivancoral's picture
End of training
860249d
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2222222222222222

hushem_1x_deit_tiny_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7073
  • Accuracy: 0.2222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.7237 0.2222
1.719 2.0 12 1.7228 0.2222
1.719 3.0 18 1.7220 0.2222
1.7128 4.0 24 1.7212 0.2222
1.7405 5.0 30 1.7204 0.2222
1.7405 6.0 36 1.7197 0.2222
1.6943 7.0 42 1.7190 0.2222
1.6943 8.0 48 1.7183 0.2222
1.6759 9.0 54 1.7176 0.2222
1.7158 10.0 60 1.7169 0.2222
1.7158 11.0 66 1.7162 0.2222
1.7024 12.0 72 1.7156 0.2222
1.7024 13.0 78 1.7150 0.2222
1.7744 14.0 84 1.7144 0.2222
1.7251 15.0 90 1.7139 0.2222
1.7251 16.0 96 1.7134 0.2222
1.6942 17.0 102 1.7129 0.2222
1.6942 18.0 108 1.7124 0.2222
1.7154 19.0 114 1.7120 0.2222
1.6829 20.0 120 1.7115 0.2222
1.6829 21.0 126 1.7111 0.2222
1.6559 22.0 132 1.7107 0.2222
1.6559 23.0 138 1.7104 0.2222
1.7194 24.0 144 1.7100 0.2222
1.6925 25.0 150 1.7097 0.2222
1.6925 26.0 156 1.7094 0.2222
1.6919 27.0 162 1.7091 0.2222
1.6919 28.0 168 1.7089 0.2222
1.6948 29.0 174 1.7086 0.2222
1.7059 30.0 180 1.7084 0.2222
1.7059 31.0 186 1.7082 0.2222
1.7337 32.0 192 1.7080 0.2222
1.7337 33.0 198 1.7079 0.2222
1.6587 34.0 204 1.7077 0.2222
1.7172 35.0 210 1.7076 0.2222
1.7172 36.0 216 1.7075 0.2222
1.7051 37.0 222 1.7075 0.2222
1.7051 38.0 228 1.7074 0.2222
1.6141 39.0 234 1.7074 0.2222
1.6784 40.0 240 1.7073 0.2222
1.6784 41.0 246 1.7073 0.2222
1.6991 42.0 252 1.7073 0.2222
1.6991 43.0 258 1.7073 0.2222
1.7247 44.0 264 1.7073 0.2222
1.6773 45.0 270 1.7073 0.2222
1.6773 46.0 276 1.7073 0.2222
1.6939 47.0 282 1.7073 0.2222
1.6939 48.0 288 1.7073 0.2222
1.6622 49.0 294 1.7073 0.2222
1.7192 50.0 300 1.7073 0.2222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1