--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_f4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- # hushem_40x_deit_tiny_f4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1784 | 1.0 | 109 | 0.2924 | 0.9048 | | 0.0478 | 2.0 | 218 | 0.2362 | 0.8810 | | 0.0048 | 2.99 | 327 | 0.2393 | 0.9286 | | 0.0107 | 4.0 | 437 | 0.2679 | 0.8810 | | 0.0008 | 5.0 | 546 | 0.1124 | 0.9524 | | 0.0001 | 6.0 | 655 | 0.4513 | 0.9048 | | 0.0 | 6.99 | 764 | 0.0770 | 0.9524 | | 0.0 | 8.0 | 874 | 0.1185 | 0.9524 | | 0.0 | 9.0 | 983 | 0.1295 | 0.9524 | | 0.0 | 9.98 | 1090 | 0.1343 | 0.9524 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1