Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697571822.bce904bcef33.2482.0 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:828ba32180b6ebd906e647aeb974e58303f62285800333530f1d78b7d139c9d2
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 19:44:41 0.0000 0.6742 0.1234 0.7397 0.7715 0.7553 0.6315
|
3 |
+
2 19:45:46 0.0000 0.1220 0.0958 0.7816 0.8505 0.8146 0.7085
|
4 |
+
3 19:46:51 0.0000 0.0722 0.1058 0.8130 0.8540 0.8330 0.7356
|
5 |
+
4 19:47:55 0.0000 0.0485 0.1227 0.8392 0.8580 0.8485 0.7566
|
6 |
+
5 19:48:59 0.0000 0.0335 0.1517 0.8440 0.8648 0.8543 0.7732
|
7 |
+
6 19:50:05 0.0000 0.0246 0.1573 0.8487 0.8608 0.8547 0.7716
|
8 |
+
7 19:51:09 0.0000 0.0183 0.1808 0.8605 0.8688 0.8646 0.7783
|
9 |
+
8 19:52:15 0.0000 0.0126 0.1948 0.8585 0.8620 0.8602 0.7786
|
10 |
+
9 19:53:18 0.0000 0.0095 0.1867 0.8567 0.8631 0.8599 0.7792
|
11 |
+
10 19:54:20 0.0000 0.0067 0.1856 0.8628 0.8677 0.8652 0.7862
|
runs/events.out.tfevents.1697571822.bce904bcef33.2482.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94c730a6a574007b737721a1663386469a7469caf5bfd66c761f69bc80e4371b
|
3 |
+
size 415388
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 19:43:42,471 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 19:43:42,472 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 19:43:42,472 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 19:43:42,472 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
49 |
+
2023-10-17 19:43:42,472 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 19:43:42,472 Train: 5901 sentences
|
51 |
+
2023-10-17 19:43:42,472 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 19:43:42,472 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 19:43:42,472 Training Params:
|
54 |
+
2023-10-17 19:43:42,473 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 19:43:42,473 - mini_batch_size: "8"
|
56 |
+
2023-10-17 19:43:42,473 - max_epochs: "10"
|
57 |
+
2023-10-17 19:43:42,473 - shuffle: "True"
|
58 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 19:43:42,473 Plugins:
|
60 |
+
2023-10-17 19:43:42,473 - TensorboardLogger
|
61 |
+
2023-10-17 19:43:42,473 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 19:43:42,473 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 19:43:42,473 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 19:43:42,473 Computation:
|
67 |
+
2023-10-17 19:43:42,473 - compute on device: cuda:0
|
68 |
+
2023-10-17 19:43:42,473 - embedding storage: none
|
69 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 19:43:42,473 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
71 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 19:43:42,473 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 19:43:42,473 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 19:43:48,751 epoch 1 - iter 73/738 - loss 3.18129576 - time (sec): 6.28 - samples/sec: 2801.48 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 19:43:53,251 epoch 1 - iter 146/738 - loss 2.19020696 - time (sec): 10.78 - samples/sec: 3050.59 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 19:43:59,111 epoch 1 - iter 219/738 - loss 1.59513825 - time (sec): 16.64 - samples/sec: 3079.50 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 19:44:05,045 epoch 1 - iter 292/738 - loss 1.27764894 - time (sec): 22.57 - samples/sec: 3059.98 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 19:44:10,208 epoch 1 - iter 365/738 - loss 1.09648871 - time (sec): 27.73 - samples/sec: 3067.33 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 19:44:14,907 epoch 1 - iter 438/738 - loss 0.97918922 - time (sec): 32.43 - samples/sec: 3080.33 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 19:44:19,805 epoch 1 - iter 511/738 - loss 0.88580507 - time (sec): 37.33 - samples/sec: 3085.82 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 19:44:24,890 epoch 1 - iter 584/738 - loss 0.80554273 - time (sec): 42.42 - samples/sec: 3097.71 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 19:44:30,040 epoch 1 - iter 657/738 - loss 0.73810377 - time (sec): 47.57 - samples/sec: 3101.81 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 19:44:35,093 epoch 1 - iter 730/738 - loss 0.67997669 - time (sec): 52.62 - samples/sec: 3129.86 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 19:44:35,557 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 19:44:35,557 EPOCH 1 done: loss 0.6742 - lr: 0.000030
|
86 |
+
2023-10-17 19:44:41,721 DEV : loss 0.12336786091327667 - f1-score (micro avg) 0.7553
|
87 |
+
2023-10-17 19:44:41,759 saving best model
|
88 |
+
2023-10-17 19:44:42,193 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 19:44:48,004 epoch 2 - iter 73/738 - loss 0.15982108 - time (sec): 5.81 - samples/sec: 2868.17 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 19:44:53,384 epoch 2 - iter 146/738 - loss 0.15219823 - time (sec): 11.19 - samples/sec: 3108.03 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 19:44:58,736 epoch 2 - iter 219/738 - loss 0.14354631 - time (sec): 16.54 - samples/sec: 3140.24 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 19:45:03,750 epoch 2 - iter 292/738 - loss 0.13970635 - time (sec): 21.55 - samples/sec: 3123.54 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 19:45:08,549 epoch 2 - iter 365/738 - loss 0.13505059 - time (sec): 26.35 - samples/sec: 3108.53 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 19:45:13,319 epoch 2 - iter 438/738 - loss 0.13319422 - time (sec): 31.12 - samples/sec: 3120.46 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 19:45:18,429 epoch 2 - iter 511/738 - loss 0.12880087 - time (sec): 36.23 - samples/sec: 3131.97 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 19:45:23,596 epoch 2 - iter 584/738 - loss 0.12583910 - time (sec): 41.40 - samples/sec: 3127.20 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 19:45:29,201 epoch 2 - iter 657/738 - loss 0.12490350 - time (sec): 47.01 - samples/sec: 3139.13 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 19:45:34,718 epoch 2 - iter 730/738 - loss 0.12241339 - time (sec): 52.52 - samples/sec: 3133.31 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 19:45:35,417 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 19:45:35,417 EPOCH 2 done: loss 0.1220 - lr: 0.000027
|
101 |
+
2023-10-17 19:45:46,937 DEV : loss 0.09578868746757507 - f1-score (micro avg) 0.8146
|
102 |
+
2023-10-17 19:45:46,965 saving best model
|
103 |
+
2023-10-17 19:45:47,493 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 19:45:53,270 epoch 3 - iter 73/738 - loss 0.07059181 - time (sec): 5.77 - samples/sec: 3049.57 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 19:45:58,525 epoch 3 - iter 146/738 - loss 0.07590889 - time (sec): 11.03 - samples/sec: 3161.90 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 19:46:03,634 epoch 3 - iter 219/738 - loss 0.07091362 - time (sec): 16.14 - samples/sec: 3199.78 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 19:46:08,697 epoch 3 - iter 292/738 - loss 0.06883331 - time (sec): 21.20 - samples/sec: 3180.84 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 19:46:13,735 epoch 3 - iter 365/738 - loss 0.07059965 - time (sec): 26.24 - samples/sec: 3176.95 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 19:46:18,955 epoch 3 - iter 438/738 - loss 0.07205663 - time (sec): 31.46 - samples/sec: 3143.20 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 19:46:24,569 epoch 3 - iter 511/738 - loss 0.07270546 - time (sec): 37.07 - samples/sec: 3157.14 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 19:46:29,790 epoch 3 - iter 584/738 - loss 0.07234630 - time (sec): 42.29 - samples/sec: 3145.32 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 19:46:34,895 epoch 3 - iter 657/738 - loss 0.07186579 - time (sec): 47.40 - samples/sec: 3143.08 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 19:46:39,719 epoch 3 - iter 730/738 - loss 0.07250374 - time (sec): 52.22 - samples/sec: 3159.36 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 19:46:40,195 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 19:46:40,195 EPOCH 3 done: loss 0.0722 - lr: 0.000023
|
116 |
+
2023-10-17 19:46:51,335 DEV : loss 0.10583800822496414 - f1-score (micro avg) 0.833
|
117 |
+
2023-10-17 19:46:51,364 saving best model
|
118 |
+
2023-10-17 19:46:51,881 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 19:46:57,112 epoch 4 - iter 73/738 - loss 0.05206689 - time (sec): 5.23 - samples/sec: 3037.15 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 19:47:02,454 epoch 4 - iter 146/738 - loss 0.04622094 - time (sec): 10.57 - samples/sec: 3169.54 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 19:47:07,164 epoch 4 - iter 219/738 - loss 0.05037936 - time (sec): 15.28 - samples/sec: 3196.93 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 19:47:12,269 epoch 4 - iter 292/738 - loss 0.05234898 - time (sec): 20.39 - samples/sec: 3188.25 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 19:47:17,049 epoch 4 - iter 365/738 - loss 0.05275237 - time (sec): 25.17 - samples/sec: 3168.35 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 19:47:22,024 epoch 4 - iter 438/738 - loss 0.05040956 - time (sec): 30.14 - samples/sec: 3198.64 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 19:47:26,845 epoch 4 - iter 511/738 - loss 0.04932344 - time (sec): 34.96 - samples/sec: 3209.89 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 19:47:32,525 epoch 4 - iter 584/738 - loss 0.04781680 - time (sec): 40.64 - samples/sec: 3196.99 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 19:47:37,836 epoch 4 - iter 657/738 - loss 0.04819721 - time (sec): 45.95 - samples/sec: 3181.08 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 19:47:43,898 epoch 4 - iter 730/738 - loss 0.04886480 - time (sec): 52.02 - samples/sec: 3167.06 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 19:47:44,407 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 19:47:44,407 EPOCH 4 done: loss 0.0485 - lr: 0.000020
|
131 |
+
2023-10-17 19:47:55,491 DEV : loss 0.122743621468544 - f1-score (micro avg) 0.8485
|
132 |
+
2023-10-17 19:47:55,519 saving best model
|
133 |
+
2023-10-17 19:47:56,054 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 19:48:01,493 epoch 5 - iter 73/738 - loss 0.02654138 - time (sec): 5.44 - samples/sec: 3265.24 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 19:48:06,555 epoch 5 - iter 146/738 - loss 0.03073291 - time (sec): 10.50 - samples/sec: 3185.99 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 19:48:11,730 epoch 5 - iter 219/738 - loss 0.03108548 - time (sec): 15.67 - samples/sec: 3161.54 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 19:48:16,908 epoch 5 - iter 292/738 - loss 0.03530107 - time (sec): 20.85 - samples/sec: 3182.99 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 19:48:21,927 epoch 5 - iter 365/738 - loss 0.03345830 - time (sec): 25.87 - samples/sec: 3204.30 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 19:48:27,157 epoch 5 - iter 438/738 - loss 0.03329768 - time (sec): 31.10 - samples/sec: 3199.94 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 19:48:32,613 epoch 5 - iter 511/738 - loss 0.03272234 - time (sec): 36.56 - samples/sec: 3155.39 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 19:48:37,419 epoch 5 - iter 584/738 - loss 0.03290570 - time (sec): 41.36 - samples/sec: 3159.03 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 19:48:42,520 epoch 5 - iter 657/738 - loss 0.03309942 - time (sec): 46.46 - samples/sec: 3171.10 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 19:48:47,829 epoch 5 - iter 730/738 - loss 0.03334347 - time (sec): 51.77 - samples/sec: 3170.29 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 19:48:48,658 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 19:48:48,658 EPOCH 5 done: loss 0.0335 - lr: 0.000017
|
146 |
+
2023-10-17 19:48:59,704 DEV : loss 0.15168806910514832 - f1-score (micro avg) 0.8543
|
147 |
+
2023-10-17 19:48:59,733 saving best model
|
148 |
+
2023-10-17 19:49:00,281 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 19:49:05,290 epoch 6 - iter 73/738 - loss 0.03010752 - time (sec): 5.01 - samples/sec: 3140.40 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 19:49:10,877 epoch 6 - iter 146/738 - loss 0.02499735 - time (sec): 10.59 - samples/sec: 3101.45 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 19:49:16,327 epoch 6 - iter 219/738 - loss 0.02175671 - time (sec): 16.05 - samples/sec: 3082.57 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-17 19:49:21,571 epoch 6 - iter 292/738 - loss 0.02484654 - time (sec): 21.29 - samples/sec: 3068.11 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 19:49:26,919 epoch 6 - iter 365/738 - loss 0.02430030 - time (sec): 26.64 - samples/sec: 3058.19 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 19:49:32,199 epoch 6 - iter 438/738 - loss 0.02418786 - time (sec): 31.92 - samples/sec: 3041.81 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-17 19:49:37,745 epoch 6 - iter 511/738 - loss 0.02390168 - time (sec): 37.46 - samples/sec: 3036.04 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 19:49:42,959 epoch 6 - iter 584/738 - loss 0.02289941 - time (sec): 42.68 - samples/sec: 3066.21 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 19:49:48,171 epoch 6 - iter 657/738 - loss 0.02342068 - time (sec): 47.89 - samples/sec: 3066.73 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-17 19:49:53,684 epoch 6 - iter 730/738 - loss 0.02460435 - time (sec): 53.40 - samples/sec: 3080.94 - lr: 0.000013 - momentum: 0.000000
|
159 |
+
2023-10-17 19:49:54,408 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 19:49:54,408 EPOCH 6 done: loss 0.0246 - lr: 0.000013
|
161 |
+
2023-10-17 19:50:05,542 DEV : loss 0.15729978680610657 - f1-score (micro avg) 0.8547
|
162 |
+
2023-10-17 19:50:05,573 saving best model
|
163 |
+
2023-10-17 19:50:06,189 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-17 19:50:11,582 epoch 7 - iter 73/738 - loss 0.01280464 - time (sec): 5.39 - samples/sec: 3121.20 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-17 19:50:16,753 epoch 7 - iter 146/738 - loss 0.01448297 - time (sec): 10.56 - samples/sec: 3123.91 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-17 19:50:22,379 epoch 7 - iter 219/738 - loss 0.01626473 - time (sec): 16.18 - samples/sec: 3133.78 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 19:50:27,912 epoch 7 - iter 292/738 - loss 0.01707587 - time (sec): 21.72 - samples/sec: 3140.88 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-17 19:50:33,061 epoch 7 - iter 365/738 - loss 0.01952204 - time (sec): 26.87 - samples/sec: 3121.60 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-17 19:50:38,280 epoch 7 - iter 438/738 - loss 0.01973386 - time (sec): 32.09 - samples/sec: 3134.20 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 19:50:43,038 epoch 7 - iter 511/738 - loss 0.01921562 - time (sec): 36.84 - samples/sec: 3158.94 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-17 19:50:48,334 epoch 7 - iter 584/738 - loss 0.01911006 - time (sec): 42.14 - samples/sec: 3166.35 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-17 19:50:53,630 epoch 7 - iter 657/738 - loss 0.01943647 - time (sec): 47.44 - samples/sec: 3163.17 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-17 19:50:58,375 epoch 7 - iter 730/738 - loss 0.01835721 - time (sec): 52.18 - samples/sec: 3160.70 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-17 19:50:58,850 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 19:50:58,850 EPOCH 7 done: loss 0.0183 - lr: 0.000010
|
176 |
+
2023-10-17 19:51:09,961 DEV : loss 0.18084457516670227 - f1-score (micro avg) 0.8646
|
177 |
+
2023-10-17 19:51:09,994 saving best model
|
178 |
+
2023-10-17 19:51:10,719 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-17 19:51:15,879 epoch 8 - iter 73/738 - loss 0.00764996 - time (sec): 5.16 - samples/sec: 3152.05 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-17 19:51:22,133 epoch 8 - iter 146/738 - loss 0.01104963 - time (sec): 11.41 - samples/sec: 2973.21 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 19:51:27,099 epoch 8 - iter 219/738 - loss 0.01198235 - time (sec): 16.38 - samples/sec: 3023.19 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-17 19:51:32,039 epoch 8 - iter 292/738 - loss 0.01113988 - time (sec): 21.32 - samples/sec: 3063.31 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-17 19:51:37,404 epoch 8 - iter 365/738 - loss 0.01216710 - time (sec): 26.68 - samples/sec: 3071.41 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 19:51:42,200 epoch 8 - iter 438/738 - loss 0.01124920 - time (sec): 31.48 - samples/sec: 3103.15 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-17 19:51:48,209 epoch 8 - iter 511/738 - loss 0.01270444 - time (sec): 37.49 - samples/sec: 3113.35 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-17 19:51:53,103 epoch 8 - iter 584/738 - loss 0.01213295 - time (sec): 42.38 - samples/sec: 3133.78 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 19:51:58,181 epoch 8 - iter 657/738 - loss 0.01173209 - time (sec): 47.46 - samples/sec: 3143.35 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-17 19:52:03,086 epoch 8 - iter 730/738 - loss 0.01264595 - time (sec): 52.37 - samples/sec: 3142.90 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-17 19:52:03,702 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 19:52:03,702 EPOCH 8 done: loss 0.0126 - lr: 0.000007
|
191 |
+
2023-10-17 19:52:15,277 DEV : loss 0.19484567642211914 - f1-score (micro avg) 0.8602
|
192 |
+
2023-10-17 19:52:15,312 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-17 19:52:20,982 epoch 9 - iter 73/738 - loss 0.00488093 - time (sec): 5.67 - samples/sec: 3162.54 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 19:52:26,399 epoch 9 - iter 146/738 - loss 0.00805781 - time (sec): 11.09 - samples/sec: 3264.48 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-17 19:52:32,156 epoch 9 - iter 219/738 - loss 0.00865579 - time (sec): 16.84 - samples/sec: 3235.87 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-17 19:52:37,449 epoch 9 - iter 292/738 - loss 0.00824878 - time (sec): 22.14 - samples/sec: 3143.10 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 19:52:42,684 epoch 9 - iter 365/738 - loss 0.00755746 - time (sec): 27.37 - samples/sec: 3121.26 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-17 19:52:47,474 epoch 9 - iter 438/738 - loss 0.00745069 - time (sec): 32.16 - samples/sec: 3162.12 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-17 19:52:52,032 epoch 9 - iter 511/738 - loss 0.00907204 - time (sec): 36.72 - samples/sec: 3177.35 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 19:52:56,789 epoch 9 - iter 584/738 - loss 0.00911722 - time (sec): 41.48 - samples/sec: 3186.87 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-17 19:53:02,404 epoch 9 - iter 657/738 - loss 0.00897147 - time (sec): 47.09 - samples/sec: 3187.92 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-17 19:53:06,847 epoch 9 - iter 730/738 - loss 0.00954450 - time (sec): 51.53 - samples/sec: 3191.40 - lr: 0.000003 - momentum: 0.000000
|
203 |
+
2023-10-17 19:53:07,402 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 19:53:07,402 EPOCH 9 done: loss 0.0095 - lr: 0.000003
|
205 |
+
2023-10-17 19:53:18,725 DEV : loss 0.1866709142923355 - f1-score (micro avg) 0.8599
|
206 |
+
2023-10-17 19:53:18,756 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 19:53:24,448 epoch 10 - iter 73/738 - loss 0.00755432 - time (sec): 5.69 - samples/sec: 3440.94 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 19:53:29,523 epoch 10 - iter 146/738 - loss 0.00658582 - time (sec): 10.77 - samples/sec: 3419.43 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 19:53:34,251 epoch 10 - iter 219/738 - loss 0.00573246 - time (sec): 15.49 - samples/sec: 3424.02 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 19:53:38,964 epoch 10 - iter 292/738 - loss 0.00503723 - time (sec): 20.21 - samples/sec: 3347.86 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 19:53:43,952 epoch 10 - iter 365/738 - loss 0.00546895 - time (sec): 25.19 - samples/sec: 3299.09 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 19:53:48,719 epoch 10 - iter 438/738 - loss 0.00520885 - time (sec): 29.96 - samples/sec: 3314.36 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 19:53:54,231 epoch 10 - iter 511/738 - loss 0.00544848 - time (sec): 35.47 - samples/sec: 3288.43 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 19:53:58,768 epoch 10 - iter 584/738 - loss 0.00613301 - time (sec): 40.01 - samples/sec: 3293.93 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 19:54:03,447 epoch 10 - iter 657/738 - loss 0.00650287 - time (sec): 44.69 - samples/sec: 3300.55 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 19:54:08,736 epoch 10 - iter 730/738 - loss 0.00664178 - time (sec): 49.98 - samples/sec: 3299.34 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 19:54:09,185 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 19:54:09,185 EPOCH 10 done: loss 0.0067 - lr: 0.000000
|
219 |
+
2023-10-17 19:54:20,252 DEV : loss 0.1855737715959549 - f1-score (micro avg) 0.8652
|
220 |
+
2023-10-17 19:54:20,280 saving best model
|
221 |
+
2023-10-17 19:54:21,202 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-17 19:54:21,204 Loading model from best epoch ...
|
223 |
+
2023-10-17 19:54:23,111 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
224 |
+
2023-10-17 19:54:29,618
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.8059
|
227 |
+
- F-score (macro) 0.7164
|
228 |
+
- Accuracy 0.6929
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8570 0.8800 0.8683 858
|
234 |
+
pers 0.7792 0.8082 0.7934 537
|
235 |
+
org 0.5467 0.6212 0.5816 132
|
236 |
+
prod 0.7679 0.7049 0.7350 61
|
237 |
+
time 0.5645 0.6481 0.6034 54
|
238 |
+
|
239 |
+
micro avg 0.7907 0.8216 0.8059 1642
|
240 |
+
macro avg 0.7030 0.7325 0.7164 1642
|
241 |
+
weighted avg 0.7937 0.8216 0.8071 1642
|
242 |
+
|
243 |
+
2023-10-17 19:54:29,618 ----------------------------------------------------------------------------------------------------
|