File size: 1,951 Bytes
31fb84b
 
bf9d668
 
31fb84b
bf9d668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: mit
tags:
- vision
---

# LiLT-RoBERTa Multilingual (base-sized model) 

Language-Independent Layout Transformer - RoBERTa model by stitching a pre-trained RoBERTa (English) and a pre-trained Language-Independent Layout Transformer (LiLT) together. It was introduced in the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Wang et al. and first released in [this repository](https://github.com/jpwang/lilt).


## Model description

The Language-Independent Layout Transformer (LiLT) allows to combine any pre-trained RoBERTa encoder from the hub (hence, in any language) with a lightweight Layout Transformer to have a LayoutLM-like model for any language. 

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/lilt_architecture.jpg" alt="drawing" width="600"/>

## Intended uses & limitations

The model is meant to be fine-tuned on tasks like document image classification, document parsing and document QA. See the [model hub](https://huggingface.co/models?search=lilt) to look for fine-tuned versions on a task that interests you.

### How to use

For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/lilt.html).

### BibTeX entry and citation info

```bibtex
@misc{https://doi.org/10.48550/arxiv.2202.13669,
  doi = {10.48550/ARXIV.2202.13669},
  
  url = {https://arxiv.org/abs/2202.13669},
  
  author = {Wang, Jiapeng and Jin, Lianwen and Ding, Kai},
  
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}
```