File size: 2,851 Bytes
8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 58f6578 8128627 1729c05 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 8128627 98b9dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
datasets:
- homebrewltd/instruction-speech-whispervq-v2
language:
- en
license: apache-2.0
tags:
- sound language model
---
## Model Details
We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.
We continual pretrain on the expanded vocabulary [homebrewltd/llama3.1-s-whispervq-init](https://huggingface.co/homebrewltd/llama3.1-s-whispervq-init) with 900M tokens from [homebrewltd/raw-speech-whispervq-v1](https://huggingface.co/datasets/homebrewltd/raw-speech-whispervq-v1) dataset.
**Model developers** Homebrew Research.
**Input** Text and sound.
**Output** Text.
**Model Architecture** Llama-3.
**Language(s):** English.
## Intended Use
**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.
**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.
## Training process
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/gtpDSs750SkMPJO0-UtFq.png)
**MMLU**:
| Model | MMLU Score |
| --- | --- |
| llama3.5-instruct-8b | 69.40 |
| ichigo-llama3.1-s-v0.3: phase 3 | 63.79 |
| ichigo-llama3.1-s-v0.3: phase 2 | 63.08 |
| ichigo-llama3.1-s-base-v0.3 | **42.11** |
| llama3.5-instruct-v0.2 | 50.27 |
### Hardware
**GPU Configuration**: Cluster of 10x NVIDIA A6000-48GB.
**GPU Usage**:
- **Continual Training**: 30 hours.
### Training Arguments
We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation.
| Parameter | Continual Training |
|----------------------------|-------------------------|
| **Epoch** | 1 |
| **Global batch size** | 480 |
| **Learning Rate** | 2e-4 |
| **Learning Scheduler** | Cosine with warmup |
| **Optimizer** | AdamW fused |
| **Warmup Steps** | 50 |
| **Weight Decay** | 0.01 |
| **Max Sequence Length** | 512 |
## Citation Information
**BibTeX:**
```
@article{Llama3-S: Sound Instruction Language Model 2024,
title={Llama3-S},
author={Homebrew Research},
year=2024,
month=August},
url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-15}
```
## Acknowledgement
- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**
- **[Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)** |