Upload 2 files
Browse files- loss_log.txt +0 -0
- pretrain_config.yaml +92 -0
loss_log.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pretrain_config.yaml
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Config for multi-device full finetuning in full_finetune_distributed.py
|
2 |
+
# using a Llama3 8B Instruct model
|
3 |
+
#
|
4 |
+
# This config assumes that you've run the following command before launching
|
5 |
+
# this run:
|
6 |
+
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN>
|
7 |
+
#
|
8 |
+
# To launch on 4 devices, run the following command from root:
|
9 |
+
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full
|
10 |
+
#
|
11 |
+
# You can add specific overrides through the command line. For example
|
12 |
+
# to override the checkpointer directory while launching training
|
13 |
+
# you can run:
|
14 |
+
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
|
15 |
+
#
|
16 |
+
# This config works best when the model is being fine-tuned on 2+ GPUs.
|
17 |
+
# Single device full finetuning requires more memory optimizations. It's
|
18 |
+
# best to use 8B_full_single_device.yaml for those cases
|
19 |
+
# Tokenizer
|
20 |
+
tokenizer:
|
21 |
+
_component_: torchtune.models.llama3.llama3_s_tokenizer
|
22 |
+
path: ../model_zoo/tokenizer.model
|
23 |
+
max_seq_len: 512
|
24 |
+
|
25 |
+
# Dataset
|
26 |
+
dataset:
|
27 |
+
_component_: torchtune.datasets.sound_completion_dataset
|
28 |
+
source: jan-hq/raw_audio_with_audio_tokens_for_pretraining_using_Whisper_VQ
|
29 |
+
max_seq_len: 512
|
30 |
+
split: train
|
31 |
+
column: text
|
32 |
+
|
33 |
+
seed: 42
|
34 |
+
shuffle: True
|
35 |
+
# Model Arguments
|
36 |
+
model:
|
37 |
+
_component_: torchtune.models.llama3_1.llama3_1_s_8b
|
38 |
+
# path: model_zoo/Llama3.1_s_8b_init
|
39 |
+
checkpointer:
|
40 |
+
_component_: torchtune.training.FullModelHFCheckpointerSaveSteps
|
41 |
+
checkpoint_dir: ../model_zoo/Llama3.1_s_8b_init
|
42 |
+
checkpoint_files: [
|
43 |
+
model-00001-of-00004.safetensors,
|
44 |
+
model-00002-of-00004.safetensors,
|
45 |
+
model-00003-of-00004.safetensors,
|
46 |
+
model-00004-of-00004.safetensors,
|
47 |
+
]
|
48 |
+
recipe_checkpoint: null
|
49 |
+
output_dir: ../model_zoo/llama3-s
|
50 |
+
model_type: LLAMA3
|
51 |
+
resume_from_checkpoint: False
|
52 |
+
save_every_n_steps: 1000
|
53 |
+
max_checkpoints: 3
|
54 |
+
# Fine-tuning arguments
|
55 |
+
batch_size: 12
|
56 |
+
epochs: 1
|
57 |
+
max_steps_per_epoch: null
|
58 |
+
gradient_accumulation_steps: 4
|
59 |
+
compile: False
|
60 |
+
# Optimizer and Scheduler
|
61 |
+
optimizer:
|
62 |
+
_component_: torch.optim.AdamW #change this to use adam_mini: torchtune.modules.optimizer.Adam_mini
|
63 |
+
weight_decay: 0.01
|
64 |
+
lr: 2e-4
|
65 |
+
fused: True
|
66 |
+
lr_scheduler:
|
67 |
+
_component_: torchtune.modules.get_cosine_schedule_with_warmup
|
68 |
+
num_warmup_steps: 50
|
69 |
+
|
70 |
+
loss:
|
71 |
+
_component_: torch.nn.CrossEntropyLoss
|
72 |
+
|
73 |
+
fsdp:
|
74 |
+
cpu_offload: False
|
75 |
+
|
76 |
+
# Training env
|
77 |
+
device: cuda
|
78 |
+
dtype: bf16
|
79 |
+
|
80 |
+
# Memory management
|
81 |
+
enable_activation_checkpointing: True
|
82 |
+
memory_efficient_fsdp_wrap: True
|
83 |
+
ac_mode: 'selective'
|
84 |
+
|
85 |
+
|
86 |
+
# Logging
|
87 |
+
metric_logger:
|
88 |
+
_component_: torchtune.training.metric_logging.DiskLogger
|
89 |
+
log_dir: ${output_dir}
|
90 |
+
output_dir: ../model_zoo/Llama3-sound-log/
|
91 |
+
log_every_n_steps: 1
|
92 |
+
log_peak_memory_stats: False
|