--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: stool-condition-classification results: - task: name: Image Classification type: image-classification dataset: name: stool-image type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8171064604185623 - name: F1 type: f1 value: 0.7841031149301826 --- # stool-condition-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the stool-image dataset. It achieves the following results on the evaluation set: - Loss: 0.4538 - Auroc: 0.8897 - Accuracy: 0.8171 - Sensitivity: 0.8111 - Specificty: 0.8213 - F1: 0.7841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-----------:|:----------:|:------:| | 0.5303 | 0.98 | 100 | 0.4327 | 0.8826 | 0.7942 | 0.7191 | 0.8607 | 0.7665 | | 0.3909 | 1.96 | 200 | 0.5196 | 0.8675 | 0.8047 | 0.8539 | 0.7612 | 0.8042 | | 0.5328 | 2.94 | 300 | 0.4421 | 0.8864 | 0.8074 | 0.7528 | 0.8557 | 0.7859 | | 0.4834 | 3.92 | 400 | 0.4721 | 0.8596 | 0.7757 | 0.7135 | 0.8308 | 0.7493 | | 0.4209 | 4.9 | 500 | 0.4797 | 0.8625 | 0.7863 | 0.6798 | 0.8806 | 0.7492 | | 0.4567 | 5.88 | 600 | 0.5150 | 0.8688 | 0.7942 | 0.6011 | 0.9652 | 0.7329 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0