--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: stool-condition-classification results: - task: name: Image Classification type: image-classification dataset: name: stool-image type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.941747572815534 - name: F1 type: f1 value: 0.9302325581395349 --- # stool-condition-classification This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the stool-image dataset. It achieves the following results on the evaluation set: - Loss: 0.4237 - Auroc: 0.9418 - Accuracy: 0.9417 - Sensitivity: 0.9091 - Specificty: 0.9661 - Ppv: 0.9524 - Npv: 0.9344 - F1: 0.9302 - Model Selection: 0.9215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | Ppv | Npv | F1 | Model Selection | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-----------:|:----------:|:------:|:------:|:------:|:---------------:| | 0.5076 | 0.98 | 100 | 0.5361 | 0.8538 | 0.7731 | 0.5393 | 0.9801 | 0.96 | 0.7061 | 0.6906 | 0.5592 | | 0.4086 | 1.96 | 200 | 0.4857 | 0.8728 | 0.7836 | 0.6011 | 0.9453 | 0.9068 | 0.7280 | 0.7230 | 0.6558 | | 0.5208 | 2.94 | 300 | 0.5109 | 0.8059 | 0.7599 | 0.6124 | 0.8905 | 0.8321 | 0.7218 | 0.7055 | 0.7218 | | 0.474 | 3.92 | 400 | 0.5212 | 0.8601 | 0.7995 | 0.6180 | 0.9602 | 0.9322 | 0.7395 | 0.7432 | 0.6578 | | 0.4285 | 4.9 | 500 | 0.4511 | 0.8728 | 0.7757 | 0.7472 | 0.8010 | 0.7688 | 0.7816 | 0.7578 | 0.9462 | | 0.3506 | 5.88 | 600 | 0.4716 | 0.8691 | 0.8047 | 0.6798 | 0.9154 | 0.8768 | 0.7635 | 0.7658 | 0.7644 | | 0.4239 | 6.86 | 700 | 0.5043 | 0.8517 | 0.8100 | 0.6685 | 0.9353 | 0.9015 | 0.7611 | 0.7677 | 0.7332 | | 0.2447 | 7.84 | 800 | 0.5804 | 0.8592 | 0.8074 | 0.6910 | 0.9104 | 0.8723 | 0.7689 | 0.7712 | 0.7806 | | 0.1739 | 8.82 | 900 | 0.6225 | 0.8562 | 0.8074 | 0.7135 | 0.8905 | 0.8523 | 0.7783 | 0.7768 | 0.8229 | | 0.2888 | 9.8 | 1000 | 0.5807 | 0.8570 | 0.8047 | 0.7528 | 0.8507 | 0.8171 | 0.7953 | 0.7836 | 0.9021 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.1 - Datasets 2.14.7 - Tokenizers 0.15.2