howard-hou
commited on
Commit
•
438b415
1
Parent(s):
9e05377
Upload RankingPrompterForPreTraining
Browse files- config.json +1 -1
- configuration_rankingprompter.py +82 -0
- modeling_rankingprompter.py +140 -0
- pytorch_model.bin +2 -2
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_name_or_path": "D://huggingface_model/RankingPrompterForPreTraining-small",
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "configuration_rankingprompter.RankingPrompterConfig",
|
|
|
1 |
{
|
2 |
"_name_or_path": "D://huggingface_model/RankingPrompterForPreTraining-small",
|
3 |
"architectures": [
|
4 |
+
"RankingPrompterForPreTraining"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "configuration_rankingprompter.RankingPrompterConfig",
|
configuration_rankingprompter.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class RankingPrompterConfig(PretrainedConfig):
|
4 |
+
model_type = "umt5"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
vocab_size=250112,
|
9 |
+
d_model=512,
|
10 |
+
d_kv=64,
|
11 |
+
d_ff=1024,
|
12 |
+
num_layers=8,
|
13 |
+
num_decoder_layers=None,
|
14 |
+
num_heads=6,
|
15 |
+
relative_attention_num_buckets=32,
|
16 |
+
relative_attention_max_distance=128,
|
17 |
+
dropout_rate=0.1,
|
18 |
+
layer_norm_epsilon=1e-6,
|
19 |
+
initializer_factor=1.0,
|
20 |
+
feed_forward_proj="gated-gelu",
|
21 |
+
is_encoder_decoder=True,
|
22 |
+
use_cache=True,
|
23 |
+
tokenizer_class="T5Tokenizer",
|
24 |
+
tie_word_embeddings=True,
|
25 |
+
pad_token_id=0,
|
26 |
+
eos_token_id=1,
|
27 |
+
decoder_start_token_id=0,
|
28 |
+
classifier_dropout=0.0,
|
29 |
+
**kwargs,
|
30 |
+
):
|
31 |
+
super().__init__(
|
32 |
+
is_encoder_decoder=is_encoder_decoder,
|
33 |
+
tokenizer_class=tokenizer_class,
|
34 |
+
tie_word_embeddings=tie_word_embeddings,
|
35 |
+
pad_token_id=pad_token_id,
|
36 |
+
eos_token_id=eos_token_id,
|
37 |
+
decoder_start_token_id=decoder_start_token_id,
|
38 |
+
**kwargs,
|
39 |
+
)
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.d_model = d_model
|
42 |
+
self.d_kv = d_kv
|
43 |
+
self.d_ff = d_ff
|
44 |
+
self.num_layers = num_layers
|
45 |
+
self.num_decoder_layers = (
|
46 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
47 |
+
) # default = symmetry
|
48 |
+
self.num_heads = num_heads
|
49 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
50 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
51 |
+
self.dropout_rate = dropout_rate
|
52 |
+
self.classifier_dropout = classifier_dropout
|
53 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
54 |
+
self.initializer_factor = initializer_factor
|
55 |
+
self.feed_forward_proj = feed_forward_proj
|
56 |
+
self.use_cache = use_cache
|
57 |
+
|
58 |
+
act_info = self.feed_forward_proj.split("-")
|
59 |
+
self.dense_act_fn = act_info[-1]
|
60 |
+
self.is_gated_act = act_info[0] == "gated"
|
61 |
+
|
62 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
63 |
+
raise ValueError(
|
64 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
|
65 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
66 |
+
"'gated-gelu' or 'relu'"
|
67 |
+
)
|
68 |
+
|
69 |
+
if feed_forward_proj == "gated-gelu":
|
70 |
+
self.dense_act_fn = "gelu_new"
|
71 |
+
|
72 |
+
@property
|
73 |
+
def hidden_size(self):
|
74 |
+
return self.d_model
|
75 |
+
|
76 |
+
@property
|
77 |
+
def num_attention_heads(self):
|
78 |
+
return self.num_heads
|
79 |
+
|
80 |
+
@property
|
81 |
+
def num_hidden_layers(self):
|
82 |
+
return self.num_layers
|
modeling_rankingprompter.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import nullcontext
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
from transformers import UMT5Model
|
9 |
+
from .configuration_rankingprompter import RankingPrompterConfig
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class RankingPrompterForPreTrainingOutput:
|
14 |
+
loss: torch.FloatTensor = None
|
15 |
+
logits: torch.FloatTensor = None
|
16 |
+
|
17 |
+
|
18 |
+
class RankingPrompterForPreTraining(UMT5Model):
|
19 |
+
config_class = RankingPrompterConfig
|
20 |
+
|
21 |
+
_tied_weights_keys = [
|
22 |
+
"encoder.embed_tokens.weight",
|
23 |
+
"decoder.embed_tokens.weight",
|
24 |
+
]
|
25 |
+
|
26 |
+
def __init__(self, config):
|
27 |
+
# encoder, decoder and shared are from UMT5Model
|
28 |
+
super().__init__(config)
|
29 |
+
|
30 |
+
# add ranking head
|
31 |
+
self.ranking_head = nn.Linear(config.d_model, 1)
|
32 |
+
|
33 |
+
# Initialize weights and apply final processing
|
34 |
+
self.post_init()
|
35 |
+
|
36 |
+
# ctx for mixed precision training
|
37 |
+
self.ctx = nullcontext()
|
38 |
+
|
39 |
+
def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
|
40 |
+
self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
|
41 |
+
|
42 |
+
def disable_amp_ctx(self):
|
43 |
+
self.ctx = nullcontext()
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
document_input_ids: Optional[torch.LongTensor] = None,
|
48 |
+
document_attention_mask: Optional[torch.FloatTensor] = None,
|
49 |
+
question_input_ids: Optional[torch.LongTensor] = None,
|
50 |
+
question_attention_mask: Optional[torch.BoolTensor] = None,
|
51 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
52 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
53 |
+
labels: Optional[torch.LongTensor] = None,
|
54 |
+
use_cache: Optional[bool] = None,
|
55 |
+
return_dict: Optional[bool] = None,
|
56 |
+
) -> Union[Tuple[torch.FloatTensor], RankingPrompterForPreTrainingOutput]:
|
57 |
+
r"""
|
58 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
59 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
60 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
61 |
+
labels in `[0, ..., config.vocab_size]`
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
|
65 |
+
```"""
|
66 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
67 |
+
return_dict = (
|
68 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
69 |
+
)
|
70 |
+
# document_input_ids: [batch_size, num_doc, doc_seq_len]
|
71 |
+
batch_size, num_doc, doc_seq_len = document_input_ids.shape
|
72 |
+
#
|
73 |
+
document_input_ids = document_input_ids.view(-1, doc_seq_len)
|
74 |
+
# to [batch_size * num_doc, doc_seq_len]
|
75 |
+
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
|
76 |
+
|
77 |
+
# Convert encoder inputs in embeddings if needed
|
78 |
+
with self.ctx:
|
79 |
+
encoder_outputs = self.encoder(
|
80 |
+
input_ids=document_input_ids,
|
81 |
+
attention_mask=document_attention_mask,
|
82 |
+
return_dict=return_dict,
|
83 |
+
)
|
84 |
+
|
85 |
+
document_embeds = encoder_outputs[0]
|
86 |
+
|
87 |
+
# repeat question inputs for each document
|
88 |
+
# question_input_ids: [batch_size, question_seq_len]
|
89 |
+
question_seq_len = question_input_ids.shape[1]
|
90 |
+
question_input_ids = (
|
91 |
+
question_input_ids.unsqueeze(1)
|
92 |
+
.expand(-1, num_doc, -1)
|
93 |
+
.reshape(-1, question_seq_len)
|
94 |
+
) # [batch_size * num_doc, question_seq_len]
|
95 |
+
question_attention_mask = (
|
96 |
+
question_attention_mask.unsqueeze(1)
|
97 |
+
.expand(-1, num_doc, -1)
|
98 |
+
.reshape(-1, question_seq_len)
|
99 |
+
) # [batch_size * num_doc, question_seq_len]
|
100 |
+
|
101 |
+
# Decode
|
102 |
+
with self.ctx:
|
103 |
+
decoder_outputs = self.decoder(
|
104 |
+
input_ids=question_input_ids,
|
105 |
+
attention_mask=question_attention_mask,
|
106 |
+
past_key_values=past_key_values,
|
107 |
+
encoder_hidden_states=document_embeds,
|
108 |
+
encoder_attention_mask=document_attention_mask,
|
109 |
+
use_cache=use_cache,
|
110 |
+
return_dict=return_dict,
|
111 |
+
)
|
112 |
+
# [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
|
113 |
+
sequence_output = decoder_outputs[0]
|
114 |
+
# [batch_size * num_doc, soft_prompt_len, hidden_size]
|
115 |
+
question_seq_len = sequence_output.size(1)
|
116 |
+
# [batch_size, num_doc, soft_prompt_len, hidden_size]
|
117 |
+
soft_prompt_output = sequence_output.view(
|
118 |
+
batch_size, num_doc, question_seq_len, -1
|
119 |
+
)
|
120 |
+
|
121 |
+
# [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc, hidden_size]
|
122 |
+
ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=2))
|
123 |
+
|
124 |
+
# rank loss
|
125 |
+
loss = None
|
126 |
+
if labels is not None:
|
127 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
128 |
+
ranking_logits = ranking_logits.view(batch_size, num_doc)
|
129 |
+
loss = loss_fct(ranking_logits, labels)
|
130 |
+
|
131 |
+
if not return_dict:
|
132 |
+
output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
|
133 |
+
return ((loss,) + output) if loss is not None else output
|
134 |
+
|
135 |
+
return RankingPrompterForPreTrainingOutput(
|
136 |
+
loss=loss,
|
137 |
+
logits=ranking_logits
|
138 |
+
)
|
139 |
+
|
140 |
+
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b90ef8ceeeffc7b033e65dfc28f3adf8d82cbdad204df0677ae0c0f45f4f0c24
|
3 |
+
size 701403585
|