Unconditional Image Generation
PyTorch
huggan
gan
geninhu's picture
Upload layers.py
4a972a3
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn.utils import spectral_norm
class SpectralConv2d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self._conv = spectral_norm(
nn.Conv2d(*args, **kwargs)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._conv(input)
class SpectralConvTranspose2d(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self._conv = spectral_norm(
nn.ConvTranspose2d(*args, **kwargs)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._conv(input)
class Noise(nn.Module):
def __init__(self):
super().__init__()
self._weight = nn.Parameter(
torch.zeros(1),
requires_grad=True,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
batch_size, _, height, width = input.shape
noise = torch.randn(batch_size, 1, height, width, device=input.device)
return self._weight * noise + input
class InitLayer(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers = nn.Sequential(
SpectralConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels * 2,
kernel_size=4,
stride=1,
padding=0,
bias=False,
),
nn.BatchNorm2d(num_features=out_channels * 2),
nn.GLU(dim=1),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._layers(input)
class SLEBlock(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=4),
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=4,
stride=1,
padding=0,
bias=False,
),
nn.SiLU(),
SpectralConv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.Sigmoid(),
)
def forward(self, low_dim: torch.Tensor,
high_dim: torch.Tensor) -> torch.Tensor:
return high_dim * self._layers(low_dim)
class UpsampleBlockT1(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels * 2,
kernel_size=3,
stride=1,
padding='same',
bias=False,
),
nn.BatchNorm2d(num_features=out_channels * 2),
nn.GLU(dim=1),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._layers(input)
class UpsampleBlockT2(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels * 2,
kernel_size=3,
stride=1,
padding='same',
bias=False,
),
Noise(),
BatchNorm2d(num_features=out_channels * 2),
nn.GLU(dim=1),
SpectralConv2d(
in_channels=out_channels,
out_channels=out_channels * 2,
kernel_size=3,
stride=1,
padding='same',
bias=False,
),
Noise(),
nn.BatchNorm2d(num_features=out_channels * 2),
nn.GLU(dim=1),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._layers(input)
class DownsampleBlockT1(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers = nn.Sequential(
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=4,
stride=2,
padding=1,
bias=False,
),
nn.BatchNorm2d(num_features=out_channels),
nn.LeakyReLU(negative_slope=0.2),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._layers(input)
class DownsampleBlockT2(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._layers_1 = nn.Sequential(
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=4,
stride=2,
padding=1,
bias=False,
),
nn.BatchNorm2d(num_features=out_channels),
nn.LeakyReLU(negative_slope=0.2),
SpectralConv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding='same',
bias=False,
),
nn.BatchNorm2d(num_features=out_channels),
nn.LeakyReLU(negative_slope=0.2),
)
self._layers_2 = nn.Sequential(
nn.AvgPool2d(
kernel_size=2,
stride=2,
),
SpectralConv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.BatchNorm2d(num_features=out_channels),
nn.LeakyReLU(negative_slope=0.2),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
t1 = self._layers_1(input)
t2 = self._layers_2(input)
return (t1 + t2) / 2
class Decoder(nn.Module):
def __init__(self, in_channels: int,
out_channels: int):
super().__init__()
self._channels = {
16: 128,
32: 64,
64: 64,
128: 32,
256: 16,
512: 8,
1024: 4,
}
self._layers = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=8),
UpsampleBlockT1(in_channels=in_channels, out_channels=self._channels[16]),
UpsampleBlockT1(in_channels=self._channels[16], out_channels=self._channels[32]),
UpsampleBlockT1(in_channels=self._channels[32], out_channels=self._channels[64]),
UpsampleBlockT1(in_channels=self._channels[64], out_channels=self._channels[128]),
SpectralConv2d(
in_channels=self._channels[128],
out_channels=out_channels,
kernel_size=3,
stride=1,
padding='same',
bias=False,
),
nn.Tanh(),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self._layers(input)