File size: 1,961 Bytes
3e929e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import torch
import torch.nn as nn
from enum import Enum
import base64
import json
from io import BytesIO
from PIL import Image
import requests
import re
class ImageType(Enum):
REAL_UP_L = 0
REAL_UP_R = 1
REAL_DOWN_R = 2
REAL_DOWN_L = 3
FAKE = 4
def crop_image_part(image: torch.Tensor,
part: ImageType) -> torch.Tensor:
size = image.shape[2] // 2
if part == ImageType.REAL_UP_L:
return image[:, :, :size, :size]
elif part == ImageType.REAL_UP_R:
return image[:, :, :size, size:]
elif part == ImageType.REAL_DOWN_L:
return image[:, :, size:, :size]
elif part == ImageType.REAL_DOWN_R:
return image[:, :, size:, size:]
else:
raise ValueError('invalid part')
def init_weights(module: nn.Module):
if isinstance(module, nn.Conv2d):
torch.nn.init.normal_(module.weight, 0.0, 0.02)
if isinstance(module, nn.BatchNorm2d):
torch.nn.init.normal_(module.weight, 1.0, 0.02)
module.bias.data.fill_(0)
def load_image_from_local(image_path, image_resize=None):
image = Image.open(image_path)
if isinstance(image_resize, tuple):
image = image.resize(image_resize)
return image
def load_image_from_url(image_url, rgba_mode=False, image_resize=None, default_image=None):
try:
image = Image.open(requests.get(image_url, stream=True).raw)
if rgba_mode:
image = image.convert("RGBA")
if isinstance(image_resize, tuple):
image = image.resize(image_resize)
except Exception as e:
image = None
if default_image:
image = load_image_from_local(default_image, image_resize=image_resize)
return image
def image_to_base64(image_array):
buffered = BytesIO()
image_array.save(buffered, format="PNG")
image_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64, {image_b64}"
|