hughlan1214 commited on
Commit
ae62d1d
1 Parent(s): 4d94307

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -3
README.md CHANGED
@@ -9,7 +9,7 @@ metrics:
9
  - recall
10
  - f1
11
  model-index:
12
- - name: SER_wav2vec2-large-xlsr-53_240303
13
  results: []
14
  ---
15
 
@@ -18,7 +18,10 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # SER_wav2vec2-large-xlsr-53_240303
20
 
21
- This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
 
 
 
22
  It achieves the following results on the evaluation set:
23
  - Loss: 1.7923
24
  - Accuracy: 0.2408
@@ -26,9 +29,21 @@ It achieves the following results on the evaluation set:
26
  - Recall: 0.2466
27
  - F1: 0.2226
28
 
 
 
 
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
 
 
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
 
9
  - recall
10
  - f1
11
  model-index:
12
+ - name: SER_wav2vec2-large-xlsr-53_fine-tuned_1.0
13
  results: []
14
  ---
15
 
 
18
 
19
  # SER_wav2vec2-large-xlsr-53_240303
20
 
21
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on a [Speech Emotion Recognition (en)](https://www.kaggle.com/datasets/dmitrybabko/speech-emotion-recognition-en) dataset.
22
+
23
+ This dataset includes the 4 most popular datasets in English: Crema, Ravdess, Savee, and Tess, containing a total of over 12,000 .wav audio files. Each of these four datasets includes 6 to 8 different emotional labels.
24
+
25
  It achieves the following results on the evaluation set:
26
  - Loss: 1.7923
27
  - Accuracy: 0.2408
 
29
  - Recall: 0.2466
30
  - F1: 0.2226
31
 
32
+
33
+ For a better performance version, please refer to [hughlan1214/Speech_Emotion_Recognition_wav2vec2-large-xlsr-53_240304_SER_fin-tuned2.0](https://huggingface.co/hughlan1214/Speech_Emotion_Recognition_wav2vec2-large-xlsr-53_240304_SER_fin-tuned2.0)
34
+
35
+
36
  ## Model description
37
 
38
+
39
+ For a better performance version, please refer to [hughlan1214/Speech_Emotion_Recognition_wav2vec2-large-xlsr-53_240304_SER_fin-tuned2.0](https://huggingface.co/hughlan1214/Speech_Emotion_Recognition_wav2vec2-large-xlsr-53_240304_SER_fin-tuned2.0)
40
+
41
+
42
+ The model was obtained through feature extraction using [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) and underwent several rounds of fine-tuning. It predicts the 7 types of emotions contained in speech, aiming to lay the foundation for subsequent use of human micro-expressions on the visual level and context semantics under LLMS to infer user emotions in real-time.
43
+
44
+ Although the model was trained on purely English datasets, post-release testing showed that it also performs well in predicting emotions in Chinese and French, demonstrating the powerful cross-linguistic capability of the [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) pre-trained model.
45
+
46
+ emotions = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
47
 
48
  ## Intended uses & limitations
49