--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: NbAiLab/nb-gpt-j-6B-v2 datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: aftonposten-6b-align-scan results: [] --- # aftonposten-6b-align-scan This model is a fine-tuned version of [data/ap-gpt-j-6b-sft-qlora-04-08](https://huggingface.co/data/ap-gpt-j-6b-sft-qlora-04-08) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.7054 - Rewards/chosen: -0.0010 - Rewards/rejected: 0.0163 - Rewards/accuracies: 0.4726 - Rewards/margins: -0.0174 - Logps/rejected: -37.4962 - Logps/chosen: -34.0358 - Logits/rejected: -2.2386 - Logits/chosen: -2.2435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6927 | 0.26 | 100 | 0.6927 | 0.0150 | 0.0088 | 0.5187 | 0.0062 | -37.5056 | -34.0159 | -2.2389 | -2.2438 | | 0.6949 | 0.52 | 200 | 0.6928 | 0.0118 | 0.0055 | 0.5274 | 0.0063 | -37.5098 | -34.0198 | -2.2387 | -2.2436 | | 0.6798 | 0.78 | 300 | 0.6981 | 0.0062 | 0.0101 | 0.4983 | -0.0039 | -37.5040 | -34.0268 | -2.2390 | -2.2439 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1