--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: NbAiLab/nb-gpt-j-6B-v2 datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: aftonposten-6b-align-scan results: [] --- # aftonposten-6b-align-scan This model is a fine-tuned version of [data/ap-gpt-j-6b-sft-qlora-04-08](https://huggingface.co/data/ap-gpt-j-6b-sft-qlora-04-08) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.9960 - Rewards/chosen: 0.0097 - Rewards/rejected: 0.0053 - Rewards/accuracies: 0.5141 - Rewards/margins: 0.0044 - Logps/rejected: -37.5100 - Logps/chosen: -34.0224 - Logits/rejected: -2.2385 - Logits/chosen: -2.2434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.0026 | 0.26 | 100 | 1.0066 | 0.0091 | 0.0155 | 0.4983 | -0.0064 | -37.4972 | -34.0232 | -2.2384 | -2.2433 | | 0.9923 | 0.52 | 200 | 0.9864 | 0.0127 | -0.0007 | 0.5328 | 0.0134 | -37.5175 | -34.0187 | -2.2389 | -2.2438 | | 0.9775 | 0.78 | 300 | 0.9998 | 0.0135 | 0.0132 | 0.4904 | 0.0004 | -37.5002 | -34.0177 | -2.2386 | -2.2435 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1